This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Vares, M.-L., Ruus, A., Nutt, N., Kubjas, A., & Raamets, J. (2021). Determination of Paper Plaster Hygrothermal Performance: Influence of Different Types of Paper on Sorption and Moisture Buffering. Journal of Building Engineering, 33, 101830. https://doi.org/10.1016/j.jobe.2020.101830Search in Google Scholar
Nutt, N., Kubjas, A., Nei, L. (2020a). Adding waste paper to clay plaster to raise its ability to buffer moisture. Proceedings of the Estonian Academy of Sciences, 69 (3), 179−185. https://doi.org/10.3176/proc.2020.3.01Search in Google Scholar
Nutt, N., & Kubjas, A. (2020). Moisture Buffer Value of Composite Material Made of Clay-Sand Plaster and Wastepaper. Journal of Sustainable Architecture and Civil Engineering, 27 (2), 108−115. https://doi.org/10.5755/j01.sace.27.2.2539Search in Google Scholar
Nutt, N., Kubjas, A., Nei, L., & Ruus, A. (2020b). The Effects of Natural Paint on the Moisture Buffering Ability of Paper Plaster. Latvian Journal of Physics and Technical Sciences, 57 (5), 51–60. https://doi.org/10.2478/lpts-2020-0027Search in Google Scholar
Nutt, N., Nei, L., Muoni, H., Kubjas, A., & Raamets, J. (2023). Novel Approach to Making Environmentally Friendly Plaster − Moisture Buffer Value of Plaster Made of Wastepaper and Different Glues. Latvian Journal of Physics and Technical Sciences, 61 (6), 59−68. https://dx.doi.org/10.2478/lpts-2024-0043Search in Google Scholar
Soolepp, M., Ruus, A., Nutt, N., Raamets, J., & Kubjas, A. (2020). Hygrothermal Performance of Paper Plaster: Influence of Different Types of Paper and Production Methods on Moisture Buffering. 12th Nordic Symposium on Building Physics (NSB 2020), E3S Web of Conferences, 172, 14010. https://doi.org/10.1051/e3sconf/202017214010Search in Google Scholar
Brandstätter, F., Kalbe, K., Autengruber, M., Lukacevic, M., Kalamees, T., Ruus, A., Annuk, A., & Füssl, J. (2023). Numerical Simulation of CLT Moisture Uptake and Dry-Out Following Water Infiltration Through End-Grain Surfaces. Journal of Building Engineering, 80, 108097. https://doi.org/10.1016/j.jobe.2023.108097Search in Google Scholar
Kalbe, K., Annuk, A., Ruus, A., & Kalamees, T. (2021). Experimental Analysis of Moisture Uptake and Dry-Out in CLT End-Grain Exposed to Free Water. Journal of Physics: Conference Series, 2069, 012050. https://doi.org/10.1088/1742-6596/2069/1/012050Search in Google Scholar
Raamets, J., Ruus, A., Ivask, M., Nei, L., & Muoni, K. (2020). Indoor Air Quality in Residential Buildings with Straw- and Reed-Bale Walls. Agraarteadus: Journal of Agricultural Science, 1, XXXI, 84–95. https://dx.doi.org/10.15159/jas.20.05Search in Google Scholar
Sahlberg, B., Gunnbjörnsdottir, M., Soon, A., Jogi, R., Gislason, T., Wieslander, G., Janson, C., & Norback, D. (2013). Airborne Molds and Bacteria, Microbial Volatile Organic Compounds (MVOC), Plasticizers and Formaldehyde in Dwellings in Three North European Cities in Relation to Sick Building Syndrome (SBS). The Science of The Total Environment, 444, 433−440. https://doi.org/10.1016/j.scitotenv.2012.10.114Search in Google Scholar
Haverinen-Shaughnessy, U. (2012). Prevalence of Dampness and Mold in European Housing Stock. Journal of Exposure Science & Environmental Epidemiology, 22 (5), 461–467. https://doi.org/10.1038/jes.2012.21Search in Google Scholar
Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A Review of Indoor Microbial Growth Across Building Materials and Sampling and Analysis Methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030Search in Google Scholar
Torvinen, E., Meklin, T., Torkko, P., Suomalainen, S., Reiman, M., Katila, M.-L., Paulin, L., & Nevalainen, A. (2006). Mycobacteria and Fungi in Moisture-Damaged Building Materials. Applied and Environmental Microbiology, 72 (10), 6822–6824. https://doi.org/10.1128/AEM.00588-06Search in Google Scholar
Mihucz, V.G., Ruus, A., Raamets, J. Wimmerová, L. Vera,T., Bossi, R., & Huttunen, K. (2021). A Review of Microbial and Chemical Assessment of Indoor Surfaces. Applied Spectroscopy Reviews, 57 (9−10), 817−889. https://doi.org/10.1080/05704928.2021.1995870Search in Google Scholar
Du, C., Li, B., & Yu, W. (2021). Indoor Mould Exposure: Characteristics, Influences and Corresponding Associations with Built Environment − a Review. Journal of Building Engineering, 35, 101983. https://doi.org/10.1016/j.jobe.2020.101983Search in Google Scholar
Beguin, H., & Nolard, N. (1994). Mould Biodiversity in Homes I. Air and Surface Analysis of 130 Dwellings. Aerobiologia, 10 (2−3), 157−166. https://doi.org/10.1007/BF02459231Search in Google Scholar
Reboux, G., Bellanger, A.P., Roussel, S., Grenouillet, F., & Millon, L. (2010). Moisissures et habitat: risques pour la santé et espèces impliquées. Moulds in Dwellings: Health Risks and Involved Species. Revue des Maladies Respiratoires, 27 (2), 169−179. https://doi.org/10.1016/j.rmr.2009.09.003Search in Google Scholar
Curtis, L., Lieberman, A., Stark, M., Rea, W., & Vetter, M. (2004). Adverse Health Effects of Indoor Molds. Journal of Nutritional & Environmental Medicine, 14 (3), 261−274. https://doi.org/10.1080/13590840400010318Search in Google Scholar
McGinnis, M.R. (2007). Indoor Mould Development and Dispersal. Medical Mycology, 45 (1), 1–9. https://doi.org/10.1080/13693780600928495Search in Google Scholar
Vereecken, E., & Roels, S. (2012). Review of Mould Prediction Models and their Influence on Mould Risk Evaluation. Building and Environment, 51, 296–310. https://doi.org/10.1016/j.buildenv.2011.11.003Search in Google Scholar
Viitanen, H. (1994). Factors Affecting the Development of Biodeterioration in Wooden Constructions. Materials and Structures, 27, 483–493. https://doi.org/10.1007/bf02473453Search in Google Scholar
Viitanen, H, Ojanen, T, Peuhkuri, R., Vinha, J., Lähdesmäki, K., & Salminen, K. (2011). Mould Growth Modelling to Evaluate Durability of Materials. XII DBMC: International Conference on Durability of Building Materials and Components: Conference proceedings. FEUP Edições, 409−416. ISBN (Print) 9789727521326Search in Google Scholar
ASTM International. (2021). Standard Test Method for Resistance of Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber. (ASTM D3273-21). ASTM International. https://standards.globalspec.com/std/14510697/astm-d3273-21Search in Google Scholar
Singh, R.P., & Desrosier, N.W. (2024). Fungi. Encyclopedia Britannica, last updated 31 Jul. 2024. (accessed 6 September 2024). https://www.britannica.com/topic/food-preservationSearch in Google Scholar
Silveira, V.D.C., Pinto, M.M., & Westphal, F.S. (2019). Influence of Environmental Factors Favorable to the Development and Proliferation of Mold in Residential Buildings in Tropical Climates. Building and Environment, 166, 106421. https://doi.org/10.1016/j.buildenv.2019.106421Search in Google Scholar
Fernández-López, M.G., Batista-García, R.A., & Aréchiga-Carvajal, E.T. (2023). Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. Journal of Fungi, 9 (6), 652. https://doi.org/10.3390/jof9060652Search in Google Scholar
Shahid, M., Srivastava, M., Pandey, S., Sharma, A., & Kumar, V. (2014). Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Gitation. Virology & Mycology, 3 (1), 127. https://doi.org/10.4172/2161-0517.1000127Search in Google Scholar
Azadi, M., Mohsenian, S., Afsharpour, M., Mozafar, F., & Asnad, G. (2018). The Effect of Temperature, Water Activity, pH and Time on the Growth of Aspergillus Niger, Alternaria Alternate and Penicillium sp. in the Historical Papers. Ganjine-Ye Asnad, 28 (3), 166−202, https://doi.org/10.22034/ganj.2018.2302Search in Google Scholar
Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I.P., Puel, O, & Lteif, R. (2015). A Study on the Physicochemical Parameters for Penicillium Expansum Growth and Patulin Production: Effect of Temperature, pH, and Water Activity. Food Science and Nutrition, 4 (4), 611−622. https://doi.org/10.1002/fsn3.324Search in Google Scholar
Sharma, V., Sharma, A., & Seth, R. (2016). Effect of Temperature and pH Variations on Growth Pattern of Keratinophilic Fungi from Jaipur, India. Entomology and Applied Science Letters, 3 (5), 177−181. ISSN 2349-2864Search in Google Scholar
Wu, H., & Wong, J.W.C. (2022). Temperature versus Relative Humidity: which is More Important for Indoor Mold Prevention? Journal of Fungi, 8 (7), 696. https://doi.org/10.3390/jof8070696Search in Google Scholar
Johansson, P. (2008). Critical Moisture Conditions for Mould Growth on Building Materials. − Licentiate Thesis, Division of Building Physics. Byggnadsfysik LTH, Lunds Tekniska Högskola.Search in Google Scholar