Uneingeschränkter Zugang

Porous Material for Gas Thermal Compression in Space Conditions: Thermal Design Aspects

   | 09. Dez. 2023

Zitieren

Ušakovs, I., Mishkinis, D., Rohrbeck, M., Tijsterman, R., Bodendieck, F., & Aziz, S. (2022). Xenon refueling compressor: Engineering model development and testing. In 2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering (FAR). 19–23 June 2022, Heilbronn, Germany. Search in Google Scholar

Collishaw, P.G., & Evans, J.R.G., (1994). An Assessment of Expressions for the Apparent Thermal Conductivity of Cellular Materials. Journal of Materials Science, 29, 486–498. Search in Google Scholar

Mantle W.J., & Chang W.S., (1991). Effective Thermal Conductivity of Sintered Metal Fibres. J. Thermophysics, 5 (4). Search in Google Scholar

Semena, M.G., & Zaripov, V.K. (1977). Influence of the Diameter and Length on Material Heat Transfer of Metal-Fibre Wicks of Heat Pipes. Teploenergetika, 24 (4), 82–84. Search in Google Scholar

Veyhl, C., Fiedler, T., Andersen, O., Meinert, J., Bernthaler, T., Belova, I.V., & Murch, G.E. (2012). On the Thermal Conductivity of Sintered Metallic Fibre Structures. International Journal of Heat and Mass Transfer, 55, 2440–2448. Search in Google Scholar

Belova, I.V., Graeme, E., Murch, G.E., Fiedler, T., & Öchsner, A. (2008). The Lattice Monte Carlo Method for Solving Phenomenological Mass and Thermal Diffusion Problems. Defect and Diffusion Forum, 279, 13–22. Search in Google Scholar

Koh, J.C.Y., & Fortini, A. (1973). Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials. Int. J. Heat Mass Transfer., 16, 1013–1022. Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik