Uneingeschränkter Zugang

Nanopore Formation at the Junctions of the Polycrystal Intergranular Boundary Under Plastic Deformation


Zitieren

Chazalviel, J. N., Wehrspohn, R. B., & Ozanam, F. (2000). Electrochemical Preparation of Porous Semiconductors: From Phenomenology to Understanding. Materials Science and Engineering: B, 69, 1–10. doi: 10.1016/S0921-5107(99)00285-8 Search in Google Scholar

Bellet, D., & Canham, L. (1998). Controlled Drying: The Key to Better Quality Porous Semiconductors. Advanced Materials, 10 (6), 487–490. Search in Google Scholar

Zhang, M., Cui, X., Wang, Y., Wang, B., Ye, M., Wang, W., ... & Lin, Z. (2020). Simple Route to Interconnected, Hierarchically Structured, Porous Zn2SnO4 Nanospheres as Electron Transport Layer for Efficient Perovskite Solar Cells. Nano Energy, 71, 104620. doi:/10.1016/j. nanoen.2020.104620 Search in Google Scholar

Zhang, X., Wang, B., Huang, L., Huang, W., Wang, Z., Zhu, W., ... & Marks, T. J. (2020). Breath Figure–Derived Porous Semiconducting Films for Organic Electronics. Science Advances, 6 (13), eaaz1042. doi: 10.1126/sciadv.aaz1042 Search in Google Scholar

Zhou, X., Cheng, X., Zhu, Y., Elzatahry, A. A., Alghamdi, A., Deng, Y., & Zhao, D. (2018). Ordered Porous Metal Oxide Semiconductors for Gas Sensing. Chinese Chemical Letters, 29 (3), 405–416. doi: 10.1016/j.cclet.2017.06.021 Search in Google Scholar

Naderi, N., & Moghaddam, M. (2020). Ultra-sensitive UV Sensors Based on Porous Silicon Carbide Thin Films on Silicon Substrate. Ceramics International, 46 (9), 13821–13826. doi: 10.1016/j. ceramint.2020.02.173 Search in Google Scholar

Cai, J., Lv, C., Hu, C., Luo, J., Liu, S., Song, J., ... & Watanabe, A. (2020). Laser Direct Writing of Heteroatom-Doped Porous Carbon for High-Performance Micro-Supercapacitors. Energy Storage Materials, 25, 404–415. doi: 10.1016/j. ensm.2019.10.001 Search in Google Scholar

Vambol, S., Vambol, V., Suchikova, Y., & Deyneko, N. (2017) Analysis of the Ways to Provide Ecological Safety for the Products of Nanotechnologies throughout their Life Cycle. Eastern-European Journal of Enterprise Technologies, 1 (10–85), 27–3. doi 10.15587/1729-4061.2017.85847 Search in Google Scholar

Ramesh, C., Tyagi, P., Bhattacharyya, B., Husale, S., Maurya, K. K., Kumar, M. S., & Kushvaha, S. S. (2019). Laser Molecular Beam Epitaxy Growth of Porous GaN Nanocolumn and Nanowall Network on Sapphire (0001) for High Responsivity Ultraviolet Photodetectors. Journal of Alloys and Compounds, 770, 572–581. doi: 10.1016/j.jallcom.2018.08.149 Search in Google Scholar

Gemmel, C., Hensen, J., Kajari-Schröder, S., & Brendel, R. (2017). 4.5 ms Effective Carrier Lifetime in Kerfless Epitaxial Silicon Wafers from the Porous Silicon Process. IEEE Journal of Photovoltaics, 7 (2), 430–436. doi: /10.1109/JPHOTOV.2016.2642640 Search in Google Scholar

Suchikova, J.A. (2015). Synthesis of Indium Nitride Epitaxial Layers on a Substrate of Porous Indium Phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017. Search in Google Scholar

Sundarapura, P., Zhang, X. M., Yogai, R., Murakami, K., Fave, A., & Ihara, M. (2021). Nanostructure of Porous Si and Anodic SiO2 Surface Passivation for Improved Efficiency Porous Si Solar Cells. Nanomaterials, 11 (2), 459. doi:10.3390/nano11020459 Search in Google Scholar

Huang, X., Cen, D., Wei, R., Fan, H., & Bao, Z. (2019). Synthesis of Porous Si/C Composite Nanosheets from Vermiculite with a Hierarchical Structure as a High-Performance Anode for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 11 (30), 26854–26862. doi: 10.1021/acsami.9b06976 Search in Google Scholar

Suchikova, Y. (2016) Provision of Environmental Safety through the Use of Porous Semiconductors for Solar Energy Sector. Eastern-European Journal of Enterprise Technologies, 6(5 (84), 26–33. https://doi.org/10.15587/1729-4061.2016.85848 Search in Google Scholar

Kou, X., Machness, A., Paluch, E., & Goorsky, M. (2018). Homoepitaxial Growth of InP on Electrochemical Etched Porous InP Surface. ECS Journal of Solid State Science and Technology, 7 (5), P269. doi/10.1149/2.0161805jss Search in Google Scholar

Suchikova, J.A., Kidalov, V.V., & Sukach, G.A. (2009). Blue Shift of Photoluminescence Spectrum of Porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113 Search in Google Scholar

Suchikova, Y.A., Kidalov, V.V., & Sukach, G.A. (2010). Influence of the Carrier Concentration of Indium Phosphide on the Porous Layer Formation. Journal of Nanoand Electronic Physics, 2 (4), 75–81. Search in Google Scholar

Quill, N., Clancy, I., Nakahara, S., Belochapkine, S., O’Dwyer, C., Buckley, D. N., & Lynch, R. P. (2017). Process of Formation of Porous Layers in n-InP. ECS Transactions, 77 (4), 67. doi: /10.1149/07704.0067ecst Search in Google Scholar

Hassen, M., Kallel, N., & Ezzaouia, H. (2019). Analysis of Morphological, Optical and Thermal Properties of Porous p-Type Indium Phosphide p-InP (100) Prepared by the Vapor Etching Method. The European Physical Journal Plus, 134 (7), 1–10. doi: 10.1140/epjp/i2019-12720-1 Search in Google Scholar

Sychikova, Y.O., Bogdanov, I.T., & Kovachov, S.S. (2019). Influence of Current Density of Anodizing on the Geometric Characteristics of Nanostructures Synthesized on the Surface of Semiconductors of A3B5 Group and Silicon. Functional Materials, 27 (1), 29–34. doi:10.15407/fm27.01.29 Search in Google Scholar

Takizawa, T. T. T., Arai, S. A. S., & Nakahara, M. N. M. (1994). Fabrication of Vertical and Uniform-Size Porous InP Structure by Electrochemical Anodization. Japanese Journal of Applied Physics, 33 (5A), L643. doi: 10.1143/JJAP.33.L643 Search in Google Scholar

Yana, S. (2016). Porous indium phosphide: Preparation and properties. In Yana, S. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques (pp. 283–306 X). doi: 10.1007/978-3-319-15266-0_9 Search in Google Scholar

Yang, X., Xi, F., Chen, X., Li, S., Wan, X., Ma, W., ... & Chang, Y. (2021). Porous Silicon Fabrication and Surface Cracking Behavior Research Based on Anodic Electrochemical Etching. Fuel Cells, 21 (1), 52–57. DOI:10.1002/fuce.202000048 Search in Google Scholar

Suohikova, Y., Vambol, S., Vambol, V., Mozaffari, N., & Mozaffari, N. (2019) Justification of the Most Rational Method for the Nanostructures Synthesis on the Semiconductors Surface. Journal of Achievements in Materials and Manufacturing Engineering, 92 (1–2), 19–28. doi:10.5604/01.3001.0013.3184 Search in Google Scholar

Azuelos, P., Girault, P., Lorrain, N., Poffo, L., Guendouz, M., Thual, M., ... & Charrier, J. (2017). High Sensitivity Optical Biosensor Based on Polymer Materials and Using the Vernier Effect. Optics Express, 25 (24), 30799–30806. doi:10.1016/j.optmat.2017.07.005 Search in Google Scholar

Adams, K. J., DeBord, J. D., & Fernandez-Lima, F. (2018). Discovery and Targeted Monitoring of Biomarkers Using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34 (5), 051804, 91. doi:10.1116/6.0000203 Search in Google Scholar

Niu, J., Albero, J., Atienzar, P., & García, H. (2020). Porous Single‐Crystal‐Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Advanced Functional Materials, 30 (15), 1908984. doi: 10.1109/JPHOTOV.2019.2912069 Search in Google Scholar

Jafarov, M. A., Nasirov, E. F., Jahangirova, S. A., & Mammadov, R. (2019). Nanostructured Cu2ZnSnS4 Thin Films on Porous-Si Wafer. Journal of Materials and Applications, 8 (1), 28–33. doi:10.1134/S1063785019020342 Search in Google Scholar

Heinke, L., & Wöll, C. (2019). Surface‐ Mounted Metal–Organic Frameworks: Crystalline and Porous Molecular Assemblies for Fundamental Insights and Advanced Applications. Advanced Materials, 31 (26), 1806324. doi:10.1002/adma.201806324 Search in Google Scholar

Suchikova, Y.A., Kidalov, V.V., & Sukach, G.A. (2011). Influence of Dislocations on the Process of Pore Formation in n-InP (111) Single Crystals. Semiconductors, 45, 121–124. doi:10.1134/S1063782611010192 Search in Google Scholar

Zimin, S., Vasin, V., Gorlachev, E., Naumov, V., Petrakov, A., & Shilov, S. (2011). Fabrication and Study of Porous PbTe Layers on Silicon Substrates. Physica Status Solidi C, 8 (6), 1801–1804. doi: 10.1002/pssc.201000025 Search in Google Scholar

Ulin, V. P., & Konnikov, S. G. (2007). Electrochemical Pore Formation Mechanism in III–V Crystals (Part I). Semiconductors, 41, 832–844. doi:10.1134/S1063782607070111 Search in Google Scholar

Guarini, K. W., Black, C. T., Milkove, K. R., & Sandstrom, R. L. (2001). Nanoscale Patterning Using Self-Assembled Polymers for Semiconductor Applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 19 (6), 2784–2788. doi: 10.1116/1.1421551 Search in Google Scholar

Rehn, V., Hötzer, J., Rheinheimer, W., Seiz, M., Serr, C., & Nestler, B. (2019). Phase-field Study of Grain Growth in Porous Polycrystals. Acta Materialia, 174, 439–449. doi:10.1016/j.actamat.2019.05.059 Search in Google Scholar

Tikare, V., Miodownik, M. A., & Holm, E. A. (2001). Three‐Dimensional Simulation of Grain Growth in the Presence of Mobile Pores. Journal of the American Ceramic Society, 84 (6), 1379–1385. doi:10.1111/j.1151-2916.2001.tb00845.x Search in Google Scholar

Chen, C., Sun, S., Chou, M., & Xie, K. (2017). In situ Inward Epitaxial Growth of Bulk Macroporous Single Crystals. Nature communications, 8 (1), 1–8. doi:10.1038/s41467-017-02197-6 Search in Google Scholar

Ng, K. W., Ko, W. S., Chen, R., Tran, T. T. D., Lu, F., Chuang, L. C., ... & Chang-Hasnain, C. (2010). Nanolasers grown on polycrystalline silicon. In 2010 23rd Annual Meeting of the IEEE Photonics Society (pp. 78-79). IEEE. doi:10.1109/PHOTONICS.2010.5698766 Search in Google Scholar

McDonald, S. A., Burnett, T. L., Donoghue, J., Gueninchault, N., Bale, H., Holzner, C., ... & Withers, P. J. (2021). Tracking Polycrystal Evolution Non-destructively in 3D by Laboratory X-ray Diffraction Contrast Tomography. Materials Characterization, 172, 110814. doi: 10.1016/j.matchar.2020.110814 Search in Google Scholar

Lazarenko, A. S., Mikhailovskij, I. M., Rabukhin, V. B., & Velikodnaya, O. A. (1995). Nanotopography and Grain-Boundary Migration in the Vicinity of Triple Junctions. Acta metallurgica et materialia, 43 (2), 639–643. doi:10.1016/0956-7151(94)00228-A Search in Google Scholar

Lazarenko, A.S., Rabukhin, V.B., & Slezov, V.V. (1991). Concerning the Formation of a Junction Disclination at a Triple Junction of Boundaries under Conditions of Low-Temperature Diffusion Creep. Physics of Metals and Metallography, 72 (3), 48. Search in Google Scholar

Perevezentsev, V. N., Kirikov, S. V., & Svirina, Y. V. (2020). Conditions of Strain-Induced Facet Formation during Interaction between a Lattice Dislocation Pile-Up and a Grain Boundary. Physics of Metals and Metallography, 121, 935 doi: 10.1134/S0031918X20100087 Search in Google Scholar

Kirikov, S.V., & Perevezentsev, V.N. (2021). Analysis of the Conditions for the Existence of Stable Microcracks in an Elastic Stress Field from a Rotational-Shear Mesodefect. Letters on Materials, 11 (1), 50–54. doi: 10.22226/2410-3535-2021-1-50-54 Search in Google Scholar

Perevezentsev, V. N., & Chuvil’deev, V. N. (1992). The Theory of Structural Superplasticity—II. Accumulation of Defects on the Intergranular and Interphase Boundaries. Accommodation of the Grain-Boundary Sliding. The Upper Bound of the Superplastic Strain Rate. Acta metallurgica et materialia, 40 (5), 895–905. doi:10.1016/0956-7151(92)90066-N Search in Google Scholar

Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: Non-relativistic theory (Vol. 3). Elsevier. Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik