Uneingeschränkter Zugang

The Design and Performance of Internally Cooled Cutting Tools for Turning: A Literature Review


Zitieren

Ravi, A.M., & Murigendrappa, S.M. (2018). Experimental study on internal cooling system in hard turning of HCWCI using CBN tools. In 1st International Conference of Design, Materials and Manufacture (ICDEM 2018), 29–31 January 2018. Karnataka: AIP Publishing. doi:10.1063/1.5029629. Search in Google Scholar

Ferri, C., Minton, T., Ghani, S.B.C., & Cheng, K. (2014). Efficiency in Contamination-Free Machining using Microfluidic Structures. CIRP Journal of Manufacturing Science and Technology, 7 (2), 97–105. doi:10.1016/j.cirpj.2013.12.001. Search in Google Scholar

Rahim, W.M.F.W.A., Shahrizad, A.F.M., Khor, C.Y., Rosli, M.U., Jahidi, H., Ishak, M.I., … & Nik-Ghazali, N. (2018). Turbulent coolant inside cutting tool to control heat transfer during cutting process. In 4th International Conference on Green Design and Manufacture (IConGDM 2018), 29–30 April 2018. Ho Chi Minh: AIP Publishing. doi:10.1063/1.5066771. Search in Google Scholar

Abdelrazek, A.H., Choudhury, I.A., Nukman, Y., & Kazi, S.N. (2020). Metal Cutting Lubricants and Cutting Tools: A Review on the Performance Improvement and Sustainability Assessment. International Journal of Advanced Manufacturing Technology, 106 (9–10), 4221–4245. doi:10.1007/s00170-019-04890-w. Search in Google Scholar

Minton, T., Ghani, S., Sammler, F., Bateman, R., Fürstmann, P., & Roeder, M. (2013). Temperature of Internally-Cooled Diamond-Coated Tools for Dry-Cutting Titanium. International Journal of Machine Tools and Manufacture, 75, 27–35. doi:10.1016/j.ijmachtools.2013.08.006. Search in Google Scholar

Shu, S., Ding, H., Chen, S., & Cheng, K. (2012). Fem-Based Design and Analysis of a Smart Cutting Tool with Internal Cooling for Cutting Temperature Measurement and Control. Applied Mechanics and Materials, 217–219, 1874–1879. doi:10.4028/www.scientific.net/AMM.217-219.1874. Search in Google Scholar

Ferri, C., Minton, T., Ghani, S.B.C., & Cheng, K. (2014). Internally cooled tools and cutting temperature in contamination-free machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 (1), 135–145. doi:10.1177/0954406213480312. Search in Google Scholar

Sowgandhi, B., & Pavani, P. N. L. (2019). Recent Studies in the Application of Internal Cooling System in Conventional Machining Process. International Journal of Scientific and Technology Research, 8 (8), 441–444. Search in Google Scholar

Wu, Z., Yang, Y., Su, C., Cai, X., & Luo, C. (2017). Development and Prospect of Cooling Technology for Dry Cutting Tools. International Journal of Advanced Manufacturing Technology, 88 (5–8), 1567–1577. doi:10.1007/s00170-016-8842-7. Search in Google Scholar

Anton, S., Andreas, S., & Friedrich, B. (2014). Heat dissipation in turning operations by means of internal cooling. In 25 DAAAM International Symposium on Intelligent Manufacturing and Automation (DAAAM 2014), 26–29 November 2014 (pp. 1116–1123). Vienna: Procedia Engineering. doi:10.1016/j.proeng.2015.01.474. Search in Google Scholar

Rozzi, J. C., Sanders, J. K., & Chen, W. (2011). The Experimental and Theoretical Evaluation of an Indirect Cooling System for Machining. Journal of Heat Transfer, 133 (3). doi:10.1115/1.4002446. Search in Google Scholar

Bogajo, I.R., Tangpronprasert, P., Virulsri, C., Keeratihattayakorn, S., & Arrazola, P.J. (2020). A Novel Indirect Cryogenic Cooling System for Improving Surface Finish and Reducing Cutting Forces when Turning ASTM F-1537 Cobalt-Chromium Alloys. International Journal of Advanced Manufacturing Technology, 111 (7–8), 1971–1989. doi:10.1007/s00170-020-06193-x. Search in Google Scholar

Narayanan, D., & Jagadeesha, T. (2019). Process capability improvement using internally cooled cutting tool insert in cryogenic machining of super duplex stainless steel 2507. In 1st International Conference on Innovative Product Design and Intelligent Manufacturing System (ICIPDIMS 2019), 17–18 May 2019 (pp. 323–330). Rourkela: Lecture Notes in Mechanical Engineering. doi:10.1007/978-981-15-2696-1_31. Search in Google Scholar

Ortiz-De-Zarate, G., Soriano, D., Madariaga, A., Garay, A., Rodriguez, I., & Arrazola, P.J. (2021). Experimental and FEM analysis of dry and cryogenic turning of hardened steel 100Cr6 using CBN wiper tools. In 18th CIRP Conference on Modeling of Machining Operations (CMMO 2021), 15–17 June 2021 (pp. 7–12). Ljubljana: Procedia CIRP. doi:10.1016/j. procir.2021.09.002. Search in Google Scholar

He, A., Ye, B., & Wang, Z. (2014). Experimental Effect of Cryogenic MQL Cutting 304 Stainless Steel. Key Engineering Materials, 621, 3–8. doi:10.4028/www.scientific.net/KEM.621.3. Search in Google Scholar

Lin, H., Wang, C., Yuan, Y., Chen, Z., Wang, Q., & Xiong, W. (2015). Tool Wear in Ti-6Al-4V Alloy Turning Under Oils on Water Cooling Comparing with Cryogenic Air Mixed with Minimal Quantity Lubrication. International Journal of Advanced Manufacturing Technology, 81 (1–4), 87–101.doi:10.1007/s00170-015-7062-x. Search in Google Scholar

Wu, Z., Deng, J., Su, C., Luo, C., & Xia, D. (2014). Performance of the Micro-Texture Self-Lubricating and Pulsating Heat Pipe Self-Cooling Tools in Dry Cutting Process. International Journal of Refractory Metals and Hard Materials, 45, 238–248. doi:10.1016/j.ijrmhm.2014.02.004. Search in Google Scholar

Wu, Z., Yang, Y., & Luo, C. (2016). Design, Fabrication and Dry Cutting Performance of Pulsating Heat Pipe Self-Cooling Tools. Journal of Cleaner Production, 124, 276–282. doi:10.1016/j. jclepro.2016.02.129. Search in Google Scholar

Wu, Z., Bao, H., Xing, Y., & Liu, L. (2022). Dry Cutting Performance and Heat Transfer Simulation of Pulsating Heat Pipe Self-Cooling Tool Holder. Journal of Manufacturing Processes, 83, 129–142. doi:10.1016/j.jmapro.2022.08.055. Search in Google Scholar

Peng, R., Jiang, H., Tang, X., Huang, X., Xu, Y., & Hu, Y. (2019). Design and Performance of an Internal-Cooling Turning Tool with Micro-Channel Structures. Journal of Manufacturing Processes, 45, 690–701. doi:10.1016/j.jmapro.2019.08.011. Search in Google Scholar

Shu, S., Chen, S., & Cheng, K. (2011). Investigation of a novel green internal cooling in turning application. In 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT 2011), 12–14 August 2011 (pp. 1156–1159). doi:10.1109/EMEIT.2011.6023299. Search in Google Scholar

Bleicher, F., Pollak, C., Brier, J., & Siller, A. (2016). Reduction of Built-Up Edge Formation in Machining Al- and Cast Iron Hybrid Components by Internal Cooling of Cutting Inserts. CIRP Annals – Manufacturing Technology, 65 (1), 97–100. doi:10.1016/j.cirp.2016.04.090. Search in Google Scholar

Bleicher, F., Brier, J., & Siller, A. (2016). Simultaneous machining of a material combination with an internally and externally cooled cutting insert. In 7th CIRP Conference on High Performance Cutting (HPC 2016), 31 May – 2 June 2016 (pp. 15–18). Chemnitz: Procedia CIRP. doi:10.1016/j.procir.2016.03.196. Search in Google Scholar

Bleicher, F., & Reiter, M. (2017). Wear reduction on cutting inserts by additional internal cooling of the cutting edge. In 15th Global Conference on Sustainable Manufacturing (GCSM 2017), 25–27 September 2017 (pp. 518–524). Haifa: Procedia Manufacturing. doi:10.1016/j. promfg.2018.02.152. Search in Google Scholar

Shu, S., Zhang, Y., Xiao, C., Qi, X., & Liu, L. (2019). Cooling performance improvement of circulating internal cooling turning tool by built-in additional spray cooling nozzle. In 2019 7th International Conference on Mechanical Engineering, Material Science and Civil Engineering (ICMEMSCE 2019), 17–18 December 2019. Sanya: IOP Conference Series: Material Science and Engineering. doi:10.1088/1757-899X/758/1/012062. Search in Google Scholar

Shu, S., Zhang, Y., He, Y., & Zhang, H. (2021). Design of a Novel Turning Tool Cooled by Combining Circulating Internal Cooling with Spray Cooling for Green Cutting. Journal of Advanced Mechanical Design, Systems and Manufacturing, 15 (1). doi:10.1299/JAMDSM.2021JAMDSM0003. Search in Google Scholar

Gupta, S., Venkatesan, K., Devendiran, S., & Mathew, A.T. (2019). Experimental Investigation of IN725 Under Different Cooling Environments using New Tool Holder. Materials and Manufacturing Processes, 34 (6), 637–647. doi:10.1080/1 0426914.2018.1532583. Search in Google Scholar

Vicentin, G.C., Sanchez, L.E.A., Scalon, V.L., & Abreu, G.G.C. (2011). A Sustainable Alternative for Cooling the Machining Processes using a Refrigerant Fluid in Recirculation Inside the Toolholder. Clean Technologies and Environmental Policy, 13 (6), 831–840. doi:10.1007/s10098-011-0359-z. Search in Google Scholar

Saiful, C.-G., Cheng, K., Sun, X., & Bateman, R. (2011). Optimizing heat transfer rate in an internally cooled cutting tool: FE-based design analysis and experimental study. In 6th International Congress of Precision Machining (ICPM2011), 13–15 September 2011. doi:10.4028/www.scientific.net/KEM.496.188. Search in Google Scholar

Shu, S., Cheng, K., Ding, H., & Chen, S. (2013). An Innovative Method to Measure the Cutting Temperature in Process by using an Internally Cooled Smart Cutting Tool. Journal of Manufacturing Science and Engineering, 135 (6). doi:10.1115/1.4025742. Search in Google Scholar

Shu, S.R., Ding, H., Chen, S.J., & Cheng, K. (2013). Thermal design and analysis of an internally cooled smart cutting tool and its implementation perspectives. In 15th International Manufacturing Conference in China (IMCC 2013), 16–18 October 2013 (pp. 120–125). Material Science Forum. doi:10.4028/www.scientific.net/MSF.770.120. Search in Google Scholar

Neto, R.R.I., Scalon, V.L., Fiocchi, A.A., & Sanchez, L.E.A. (2016). Indirect Cooling of the Cutting Tool with a Pumped Two-Phase System in Turning of AISI 1045 Steel. International Journal of Advanced Manufacturing Technology, 87 (9–12), 2485–2495. doi:10.1007/s00170-016-8620-6. Search in Google Scholar

Isik, Y. (2016). Using Internally Cooled Cutting Tools in the Machining of Difficult-to-Cut Materials Based on Waspaloy. Advances in Mechanical Engineering, 8 (5), 1–8. doi:10.1177/1687814016647888. Search in Google Scholar

Sanchez, L.E.D.A., Neto, R.R.I., Fragelli, R.L., Junior, C.E.D.S., & Scalon, V.L. (2015). Machining with internally cooled toolholder using a phase change fluid. In 48th CIRP International Conference on Manufacturing Systems (CIRP CMS 2015), 24–26 June 2015 (pp. 847–851). Ischia: Procedia CIRP. doi:10.1016/j.procir.2015.12.007. Search in Google Scholar

Isik, Y., Kus, A., Coskun, S., Ozdemir, K., & Cakir, M.C. (2017). A Novel Approach to use Internally Cooled Cutting Tools in Dry Metal Cutting. Indian Journal of Engineering and Materials Sciences, 24 (3), 239–246. Search in Google Scholar

Zakaria, M.S., Nordin, F., Jamalludin, M.R., Rosli, M.U., Rahim, W.M.F.W.A., Ishak, M.I., & Khor, C.Y. (2017). Finite element study on the integrity of tool holder with integrated internal cooling channel. In 3rd Electronic and Green Materials International Conference 2017 (EGM 2017), 29–30 April 2017. Aonang Krabi: AIP Conference Proceeding. doi:10.1063/1.5002254. Search in Google Scholar

Yao, B., Sun, W., Chen, B., Yu, X., He, Y., Feng, W., & Wang, S. (2017). An Independent Internal Cooling System for Promoting Heat Dissipation during Dry Cutting with Numerical and Experimental Verification. Applied Sciences (Switzerland), 7 (4). doi:10.3390/app7040332. Search in Google Scholar

Li, T., Wu, T., Ding, X., Chen, H., & Wang, L. (2017). Design of an Internally Cooled Turning Tool Based on Topology Optimization and CFD Simulation. International Journal of Advanced Manufacturing Technology, 91 (1–4), 1327–1337. doi:10.1007/s00170-016-9804-9. Search in Google Scholar

Reiter, M., Brier, J., & Bleicher, F. (2018). Machining of Iron-Carbon Alloys by the use of Poly-Crystalline Diamond Cutting Inserts with Internal Cooling. Journal of Manufacturing and Materials Processing, 2 (3). doi:10.3390/jmmp2030057. Search in Google Scholar

Li, T., Wu, T., Ding, X., Chen, H., & Wang, L. (2018). Experimental Study on the Performance of an Internal Cooled Turning Tool with Topological Channel. International Journal of Advanced Manufacturing Technology, 98 (1–4), 479–485. doi:10.1007/s00170-018-2278-1. Search in Google Scholar

Wu, T., Li, T., Ding, X., Chen, H., & Wang, L. (2018). Design of a Modular Green Closed Internal Cooling Turning Tool for Applications. International Journal of Precision Engineering and ManufacturingGreen Technology, 5 (2), 211–217. doi:10.1007/s40684-018-0021-x. Search in Google Scholar

Ozturk, E., Yildizli, K., & Saglam, F. (2021). Investigation on an Innovative Internally Cooled Smart Cutting Tool with the Built-in Cooling-Control System. Arabian Journal for Science and Engineering, 46 (3), 2397–2411. doi:10.1007/s13369-020-05002-7. Search in Google Scholar

Uhlmann, E., & Meier, P. (2021). Numerical investigation on the process behavior of a closed-loop internal cooling system for turning operations. In 18th CIRP Conference on Modeling of Machining Operations (CMMO 2021), 15–17 June 2021 (pp. 73–78). Ljubljana: Procedia CIRP. doi:10.1016/j.procir.2021.09.013. Search in Google Scholar

Zakaria, M.S., Mustapha, M., Azmi, A.I., Ahmad, A., Danish, M., & Rubaiee, S. (2022). Machinability Investigations of AZ31 Magnesium Alloy Via Submerged Convective Cooling in Turning Process. Journal of Materials Research and Technology, 19, 3685–3698. doi:10.1016/j.jmrt.2022.06.127. Search in Google Scholar

Uhlmann, E., Furstmann, P., Roeder, M., Richarz, S., & Sammler, F. (2012). Tool wear behaviour of internally cooled tools at different cooling liquid temperatures. In 10th Global Conference on Sustainable Manufacturing. Istanbul. Search in Google Scholar

Neto, R.R.I., Fragelli, R.L., Fiocchi, A.A., Scalon, V.L., & Sanchez, L.E.A. (2015). Toolholder Internally Cooled by a Phase Change Fluid in Turning of SAE XEV-F. Applied Mechanics and Materials, 798, 486–490. doi:10.4028/www.scientific.net/AMM.798.486. Search in Google Scholar

Sun, X., Bateman, R., Cheng, K., & Ghani, S.C. (2012). Design and Analysis of an Internally Cooled Smart Cutting Tool for Dry Cutting. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226 (4), 585–591. doi:10.1177/0954405411424670. Search in Google Scholar

Kromanis, A. Pikurs, G. Muiznieks, G. Kravalis, K. & Gutakovskis, V. (2014). Design of internally cooled tools for DRY cutting. In 9th International Conference of DAAAM Baltic: Industrial Engineering (DAAAM-Baltic 2014), 24–26 April 2014 (pp. 109–114). Tallinn: Proceedings of the International Conference of DAAAM Baltic “Industrial Engineering”. Search in Google Scholar

Wardle, F., Minton, T., Ghani, S.B.C., Furstmann, P., Roeder, M., Richarz, S., & Sammler, F. (2013). Artificial Neural Networks for Controlling the Temperature of Internally Cooled Turning Tools. Modern Mechanical Engineering, 3 (2A), 1–10. doi:10.4236/mme.2013.32A001. Search in Google Scholar

Ghani, S.A.C., Zakaria, M.H., Harun, W.S.W., & Zaulkafilai, Z. (2016). Dimensional accuracy of internal cooling channel made by selective laser melting (SLM) and direct metal laser sintering (DMLS) processes in fabrication of internally cooled cutting tools. In 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016), 2–3 August 2016. Cyberjaya, Selangor: MATEC Web of Conferences. doi:10.1051/matecconf/20179001058. Search in Google Scholar

Zakaria, M.H., Ghani, S.A.C., Harun, W.S.W., Zaulkafilai, Z., & Mohamed, S.R. (2017). Fabrication of Aluminium Internally Cooled Cutting Tool by Means of Selective Laser Melting (SLM). Journal of Mechanical Engineering, SI 3 (1), 185–198. Search in Google Scholar

Uhlmann, E., Peukert, B., Thom, S., Prasol, L., Fürstmann, P., Sammler, F., & Richarz, S. (2017). Solutions for Sustainable Machining. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 139 (5). doi:10.1115/1.4034850. Search in Google Scholar

Cheng, K., Niu, Z.-C., Wang, R.C., Rakowski, R., & Bateman, R. (2017). Smart Cutting Tools and Smart Machining: Development Approaches, and their Implementation and Application Perspectives. Chinese Journal of Mechanical Engineering (English Edition), 30 (5), 1162–1176. doi:10.1007/s10033-017-0183-4. Search in Google Scholar

Singh, R., & Sharma, V. (2022). CFD Based Study of Fluid Flow and Heat Transfer Effect for Novel Turning Tool Configured with Internal Cooling Channel. Journal of Manufacturing Processes, 73, 164–176. doi:10.1016/j.jmapro.2021.10.063. Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik