Zitieren

Grisham, M. B. (2013). Methods to Detect Hydrogen Peroxide in Living Cells: Possibilities and Pitfalls. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165 (4), 429–438. doi:10.1016/j.cbpa.2013.02.003 Open DOISearch in Google Scholar

Halliwell, B., Clement, M.V., & Long, L. H. (2000). Hydrogen Peroxide in the Human Body. FEBS Letters, 486 (1), 10–13. doi:10.1016/S0014-5793(00)02197-9 Open DOISearch in Google Scholar

Dev, S., Kumari S., Singh, N., Bal, S. K., Seth P., & Mukhopadhyay, C. K. (2015). Role of Extracellular Hydrogen Peroxide in Regulation of Iron Homeostasis Genes in Neuronal Cells: Implication in Iron Accumulation. Free Radical Biology and Medicine, 86, 78–89. doi:10.1016/j.freeradbiomed.2015.05.025 Open DOISearch in Google Scholar

Driessens, N., Versteyhe, S., Ghaddhab, C., Burniat, A., Deken, X. D., Sande, J. V., … & Corvilain, B. (2009). Hydrogen Peroxide Induces DNA Single- and Double-Strand Breaks in Thyroid Cells and is Therefore a Potential Mutagen for this Organ. Endocrine-Related Cancer, 16, 845–856. doi:10.1677/ERC-09-0020 Open DOISearch in Google Scholar

Zunino, A., Degan, P., Vigo, T., & Abbondandolo, A. (2001). Hydrogen Peroxide: Effects on DNA, Chromosomes, Cell Cycle and Apoptosis Induction in Fanconi’s Anemia Cell Lines. Mutagenesis, 16 (3), 283–288. doi:10.1093/mutage/16.3.283 Open DOISearch in Google Scholar

Amri, F., Ghouili, I., Amri, M., Carrier, A., & Masmoudi-Kouki, O. (2017). Neuroglobin Protects Astroglial Cells from Hydrogen Peroxide-Induced Oxidative Stress and Apoptotic Cell Death. Journal of Neurochemistry,140 (1), 151–169. doi:10.1111/jnc.13876 Open DOISearch in Google Scholar

Lisanti, M., Martinez-Outschoorn, U., Lin, Z., Pavlides, S., Whitaker-Menezes, D., Pestell, R., … & Sotgia, F. (2011). Hydrogen Peroxide Fuels Aging, Inflammation, Cancer Metabolism and Metastasis: The Seed and Soil also Needs “Fertilizer”. Cell Cycle, 10 (15), 2440–2449. doi:10.4161/cc.10.15.16870 Open DOISearch in Google Scholar

Guesmi, F., Bellamine, H., & Landoulsi, A. (2018). Hydrogen Peroxide-Induced Oxidative Stress, Acetylcholinesterase Inhibition, and Mediated Brain Injury Attenuated by Thymus Algeriensis. Appl Physiol Nutr Metab, 43 (12), 1275–1281. doi: 10.1139/apnm-2018-0107 Open DOISearch in Google Scholar

Gaikwad, R., Thangaraj, P. R., & Sen, A. K. (2021). Direct and Rapid Measurement of Hydrogen Peroxide in Human Blood Using a Microfluidic Device. Scientifc Reports, 11, 2960. doi: 10.1038/s41598-021-82623-4 Open DOISearch in Google Scholar

Rhee, S.G., Chang, T.-S., Jeong, W., & Kang, D. (2010). Methods for Detection and Measurement of Hydrogen Peroxide Inside and Outside of Cells. Molecules and Cells, 29 (6), 539–49. doi: 10.1007/s10059-010-0082-3. Open DOISearch in Google Scholar

Zheng, X., Lian, Q., Zhou, L., Jiang, Y., & Gao, J. (2021). Peroxidase Mimicking of Binary Polyacrylonitrile-CuO Nanoflowers and the Application in Colorimetric Detection of H2O2 and Ascorbic Acid. ACS Sustainable Chem. Eng, 9, 7030−7043. doi: 10.1021/acssuschemeng.1c00723 Open DOISearch in Google Scholar

González-Sánchez, M. I., González-Macia, L., Pérez-Prior, M. T., Valero, E., Hancock, J., & Killard, A.J. (2013). Electrochemical Detection of Extracellular Hydrogen Peroxide in Arabidopsis Thaliana: A Real-Time Marker of Oxidative Stress. Plant, Cell & Environment, 36 (4), 869–78. doi: 10.1111/pce.12023. Open DOISearch in Google Scholar

Rahman, M. M., Adeosun, W. A., & Asiri, A. M. (2020). Fabrication of Selective and Sensitive Chemical Sensor Development Based on Flower-Flake La2ZnO4 Nanocomposite for Effective Non-Enzymatic Sensing of Hydrogen Peroxide by Electrochemical Method. Microchemical Journal, 159, 105536. doi: 10.1016/j.microc.2020.105536. Open DOISearch in Google Scholar

Yin, H., Shi, Y., Dong, Y., & Chu, X. (2021). Synthesis of Spinel-Type CuGa2O4 Nanoparticles as a Sensitive Non-Enzymatic Electrochemical Sensor for Hydrogen Peroxide and Glucose Detection. Journal of Electroanalytical Chemistry, 885, 115100. doi: 10.1016/j.jelechem.2021.115100. Open DOISearch in Google Scholar

Sinha, G. N., Subramanyam, P., Sivaramakrishna, V., & Subrahmanyam, C. (2021). Electrodeposited Copper Bismuth Oxide as a Low-Cost, Non-Enzymatic Electrochemical Sensor for Sensitive Detection of Uric Acid and Hydrogen Peroxide. Inorganic Chemistry Communications, 129, 108627. doi: 10.1016/j.inoche.2021.108627 Open DOISearch in Google Scholar

Atacan, K., & Özacar, M. (2021). Construction of a Non-Enzymatic Electrochemical Sensor Based on CuO/g-C3N4 Composite for Selective Detection of Hydrogen Peroxide. Materials Chemistry and Physics, 266, 124527. doi: 10.1016/j.matchemphys.2021.124527 Open DOISearch in Google Scholar

Kamyabi, M.A., & Hajari, N. (2017). Low Potential and Non-Enzymatic Hydrogen Peroxide Sensor Based on Copper Oxide Nanoparticle on Activated Pencil Graphite Electrode. J. Braz. Chem. Soc., 28 (5), 808–818. doi: 10.21577/0103-5053.20160232 Open DOISearch in Google Scholar

Huang, J., Zhu, Y., Zhong, H., Yang, X., & Li, C. (2014). Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Applied Materials Interfaces, 6 (10), 7055–7062. doi: 10.1021/am501799w Open DOISearch in Google Scholar

Kumar, J. S., Ghosh, S., Murmu, N. C., Mandal, N. & Kuila, T. (2019). Electrochemical Detection of H2O2 Using Copper Oxide-Reduced Graphene Oxide Heterostructure. Journal of Nanoscience and Nanotechnology, 19, 5295–5302. doi: 10.1166/jnn.2019.16834. Open DOISearch in Google Scholar

Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 23, 100276. doi: 10.1016/j.sbsr.2019.100276 Open DOISearch in Google Scholar

Kolthoff, I. M., & Medalia, A. I. (1949). The Reaction between Ferrous Iron and Peroxides. I. Reaction with Hydrogen Peroxide in the Absence of Oxygen. Journal of the American Chemical Society, 71 (11), 3777–3783. doi: 10.1021/ja01179a057 Open DOISearch in Google Scholar

Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm, 22, 1346–1358. doi:10.1039/C9CE01556F Open DOISearch in Google Scholar

Liu, M., Liu, R., & Chen, W. (2013). Graphene Wrapped Cu2O nanocubes: Non-Enzymatic Electrochemical Sensors for the Detection of Glucose and Hydrogen Peroxide with Enhanced Stability. Biosens. Bioelectron, 45, 206–212. doi: 10.1016/j.bios.2013.02.010 Open DOISearch in Google Scholar

Gao, P., & Liu, D. (2015). Facile Synthesis of Copper Oxide Nanostructures and their Applicationin Non-Enzymatic Hydrogen Peroxide Sensing. Sensors and Actuators B, 208, 346–354. doi:10.1016/j.snb.2014.11.051 Open DOISearch in Google Scholar

Gao, P., & Liu, D. (2015). Petal-Like CuO Nanostructures Prepared by a Simple Wet Chemical Method, and their Application to Non-Enzymatic Amperometric Determination of Hydrogen Peroxide. Microchim Acta, 182 (7–8), 1231–1239. doi: 10.1007/s00604-015-1476-x Open DOISearch in Google Scholar

Zhang, W., Fan, G., Yi, H., Jia, G., Li, Z., Yuan, C., … & Fu, D. (2018). Interfacial Engineering of Hierarchical Transition Metal Oxide Heterostructures for Highly Sensitive Sensing of Hydrogen Peroxide. Small, 14 (19), 1703713. doi: 10.1002/smll.201703713 Open DOISearch in Google Scholar

Mizers, V., Gerbreders, V., Sledevskis, E., Kokina, I., Tamanis, E., Krasovska, M., … & Bulanovs, A. (2020). Electrochemical Detection of Small Volumes of Glyphosate with Mass-Produced Non-Modified Gold Chips. Latvian Journal of Physics and Technical Sciences, 57 (3), 32–39. doi: 10.2478/lpts-2020-0013 Open DOISearch in Google Scholar

Dutta, A., Maji, S., Srivastava, D., Mondal, A., Biswas, P., Paul, P., & Adhikary, B. (2021). Peroxidase-Like Activity and Amperometric Sensing of Hydrogen Peroxide by Fe2O3 and Prussian Blue-Modified Fe2O3 Nanoparticles. J. Mol. Cat. A: Chem., 360, 71–77. doi: 10.1016/j.molcata.2012.04.011 Open DOISearch in Google Scholar

Majumder, S., Saha, B., Dey, S., Mondal, R., & Banerjee, S. (2016). A Highly Sensitive Non-Enzymatic Hydrogen Peroxide and Hydrazine Electrochemical Sensor Based on 3D Micro-Snowflake Architectures of α-Fe2O3. RSC Adv. 6, 59907–59918. doi: 10.1039/C6RA10470C Open DOISearch in Google Scholar

Cai, J., Ding, S., Chen, G., Sun, Y., & Xie, Q. (2018). In Situ Electrodeposition of Mesoporous Aligned α-Fe2O3 Nanoflakes for Highly Sensitive Nonenzymatic H2O2 Sensor. Applied Surface Science, 456, 302–306. doi: 10.1016/j.apsusc.2018.06.108 Open DOISearch in Google Scholar

Du, S., Ren, Z., Wu, J., Xi, W., & Fu, H. (2016). Vertical α-FeOOH Nanowires Grown on the Carbon Fiber Paper as a Free-Standing Electrode for Sensitive H2O2 Detection. Nano Res., 9, 2260–2269. doi: 10.1007/s12274-016-1113-y Open DOISearch in Google Scholar

Molodtsova, T., Gorshenkov, M., Saliev, A., Vanyushin, V., Goncharov, I., & Smirnova, N. (2021). One-Step Synthesis of γ-Fe2O3/Fe3O4 Nanocomposite for Sensitive Electrochemical Detection of Hydrogen Peroxide. Electrochimica Acta, 370, 137723. doi: 10.1016/j.electacta.2021.137723 Open DOISearch in Google Scholar

Zhao, Y., Huo, D., Bao, J., Yang, M., Chen, M., Hou, J., … & Hou, C. (2017). Biosensor Based on 3D Graphene-Supported Fe3O4 Quantum Dots as Biomimetic Enzyme for In Situ Detection of H2O2 Released from Living Cells. Sens. Actuators B Chem, 244, 1037–1044. doi:10.1016/j.snb.2017.01.029 Open DOISearch in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik