1. bookVolumen 60 (2023): Heft 1 (February 2023)
18 Mar 2008
6 Hefte pro Jahr
Uneingeschränkter Zugang

Overview of Machinability of Titanium Alloy (Ti6Al4V) and Selection of Machining Parameters

Online veröffentlicht: 10 Feb 2023
Volumen & Heft: Volumen 60 (2023) - Heft 1 (February 2023)
Seitenbereich: 52 - 66
18 Mar 2008
6 Hefte pro Jahr

1. Warfield, B. (2022). How to Machine Titanium [Tooling, Tips, and Techniques]. CNCCookbook: Be A Better CNC’er. Available at https://www.cnccookbook.com/how-to-machine-titanium/ Search in Google Scholar

2. Gao, Y., Wu, Y., Xiao, J., & Lu, D. (2018). An Experimental Research on the Machinability of a High Temperature Titanium Alloy BTi-6431S in Turning Process. Manufacturing Review, 5, 12. https://doi.org/10.1051/mfreview/2018011/ Search in Google Scholar

3. Gao, Y., Wu, Y., Xiao, J., & Lu, D. (2022). Improvement of Machinability of Ti and its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect. Journal of Materials Research and Technology, 11, 719–753.10.1016/j.jmrt.2021.01.031 Search in Google Scholar

4. Bandapalli, C., Singh, K., Sutaria, B., & Bhatt, D. (2018). Experimental Investigation of Top Burr Formation in High-Speed Micro-End Milling of Titanium Alloy. Machining Science and Technology, 22 (6), 989–1011. https://doi.org/10.1080/10910344.2018.144921310.1080/10910344.2018.1449213 Search in Google Scholar

5. Niknam, S. A., Khettabi, R., & Songmene, V. (2014). Machinability and Machining of Titanium Alloys: A Review. Machining of Titanium Alloys, 1–30.10.1007/978-3-662-43902-9_1 Search in Google Scholar

6. Kennametal. (2022). Machining and Manufacturing Made Easy. Available at https://www.kennametal.com Search in Google Scholar

7. Ahsan, M. M., & Student, M. S. (2016). 3D Printing and Titanium Alloys: A Paper Review. Eur. Acad. Res, 3 (10), 11144–11154. Search in Google Scholar

8. Polishetty, A., Goldberg, M., Littlefair, G., Puttaraju, M., Patil, P., & Kalra, A. (2014). A Preliminary Assessment of Machinability of Titanium Alloy Ti-6Al-4V During Thin Wall Machining Using Trochoidal Milling. Procedia Engineering, 97, 357–364.10.1016/j.proeng.2014.12.259 Search in Google Scholar

9. Polishetty, A., Shunmugavel, M., Goldberg, M., Littlefair, G., & Singh, R. K. (2017). Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V. Procedia Manufacturing, 7, 284–289.10.1016/j.promfg.2016.12.071 Search in Google Scholar

10. Coromant, S. (2022). Troublesome Titanium – Tips on Machining this Tough Material. Available at https://www.sandvik.coromant.com/us/news/technical_articles/pages/troublesome-titanium-tips-on-machining.aspx Search in Google Scholar

11. Arrazola, P. J., Garay, A., Iriarte, L. M., Armendia, M., Marya, S., & Le Maître, F. (2009). Machinability of Titanium Alloys (Ti6Al4V and Ti555. 3). Journal of Materials Processing Technology, 209 (5), 2223–2230.10.1016/j.jmatprotec.2008.06.020 Search in Google Scholar

12. Ginta, T. L., & Amin, A. N. (2013). Thermally Assisted End Milling of Titanium Alloy Ti-6Al-4V Using Induction Heating. International Journal of Machining and Machinability of Materials, 14 (2), 194–212.10.1504/IJMMM.2013.055737 Search in Google Scholar

13. Roy, S., Joshi, K. K., Sahoo, A. K., & Das, R. K. (2018). Machining of Ti-6Al-4V ELI Alloy: A Brief Review. IOP Conference Series: Materials Science and Engineering 390, 012112. IOP Publishing.10.1088/1757-899X/390/1/012112 Search in Google Scholar

14. Altaf, M., Dwivedi, S. P., Kanwar, R. S., Siddiqui, I. A., Sagar, P., & Ahmad, S. (2019). Machining Characteristics of Titanium Ti-6Al-4V, Inconel 718 and Tool Steel – A Critical Review. IOP Conference Series: Materials Science and Engineering, 691 (1), 012052.10.1088/1757-899X/691/1/012052 Search in Google Scholar

15. Joshi, S., Pawar, P., Tewari, A., & Joshi, S. S. (2014). Tool Wear Mechanisms in Machining of Three Titanium Alloys with Increasing β-Phase Fraction. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228 (9), 1090–1103.10.1177/0954405414522796 Search in Google Scholar

16. Dandekar, C. R., Shin, Y. C., & Barnes, J. (2010). Machinability Improvement of Titanium Alloy (Ti–6Al–4V) via LAM and Hybrid Machining. International Journal of Machine Tools and Manufacture, 50 (2), 174–182.10.1016/j.ijmachtools.2009.10.013 Search in Google Scholar

17. Jaffery, S., Sheikh, N., Khan, M., & Mativenga, P. (2013). Wear Mechanism Analysis in Milling of Ti-6Al-4V Alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227 (8), 1148–1156.10.1177/0954405413481210 Search in Google Scholar

18. Rysava, Z., Bruschi, S., Piska, M., & Zidek, J. (2018). Comparing the Performance of Micro-End Mills when Micro-Milling of Additive Manufactured Ti-6Al-4V Titanium Alloy. MM Science Journal, 2018 (04), 2543–2546.10.17973/MMSJ.2018_11_201823 Search in Google Scholar

19. Balažic, M., & Kopać, J. (2010). Machining of Titanium Alloy Ti-6Al-4V for Biomedical Applications. Strojniski Vestnik/Journal of Mechanical Engineering, 56 (3). Search in Google Scholar

20. Moritz, J., Seidel, A., Kopper, M., Bretschneider, J., Gumpinger, J., Finaske, T.,... & Ghidini, T. (2020). Hybrid Manufacturing of Titanium Ti-6Al-4V Combining Laser Metal Deposition and Cryogenic Milling. The International Journal of Advanced Manufacturing Technology, 107 (7), 2995–3009.10.1007/s00170-020-05212-1 Search in Google Scholar

21. Krishnaraj, V., Samsudeensadham, S., Sindhumathi, R., & Kuppan, P. (2014). A Study on High-Speed End Milling of Titanium Alloy. Procedia Engineering, 97, 251–257.10.1016/j.proeng.2014.12.248 Search in Google Scholar

22. Pratap, T., Patra, K., & Dyakonov, A. A. (2015). Modeling Cutting Force in Micro-Milling of Ti-6Al-4 V Titanium Alloy. Procedia Engineering, 129, 134–139.10.1016/j.proeng.2015.12.021 Search in Google Scholar

23. Gao, Y., Wu, Y., Xiao, J., & Lu, D. (2018). An Experimental Research on the Machinability of a High Temperature Titanium Alloy BTi-6431S in Turning Process. Manufacturing Review, 5, 12.10.1051/mfreview/2018011 Search in Google Scholar

24. Vijay, S., & Krishnaraj, V. (2013). Machining Parameters Optimization in End Milling of Ti-6Al-4V. Procedia Engineering, 64, 1079–1088. https://doi.org/10.1016/j.proeng.2013. Search in Google Scholar

25. Satyanarayana, K., & Gopal, A. V. (2013). Optimal Machining Conditions for Turning Ti-6Al-4V Using Response Surface Methodology. Advances in Manufacturing, 1 (4), 329–339. https://doi.org/10.1007/s40436-013-0047-910.1007/s40436-013-0047-9 Search in Google Scholar

26. Satyanarayana, K., Gopal, A. V., & Babu, P. B. (2013). Analysis for Optimal Decisions on Turning Ti-6Al-4V with Taguchi-Grey Method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 (1), 152–157. https://doi.org/10.1177/0954406213480599.10.1177/0954406213480599 Search in Google Scholar

27. Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2014). Analysis of Surface Roughness and Hardness in Titanium Alloy Machining with Polycrystalline Diamond Tool under Different Lubricating Modes. Materials Research, 17 (4), 1010–1022. https://doi.org/10.1590/1516-1439.265114.10.1590/1516-1439.265114 Search in Google Scholar

28. Deiab, I., Raza, S. W., & Pervaiz, S. (2014). Analysis of Lubrication Strategies for Sustainable Machining During Turning of Titanium ti-6al-4v Alloy. Procedia CIRP, 17, 766–771. https://doi.org/10.1016/j.procir.2014. Search in Google Scholar

29. Vishnu, N., & Aswathy, V. G. (2015). Multi-Response Optimization in Turning of Titanium Alloy Using Grey Relational Analysis. International Journal of Innovative Research in Science, Engineering and Technology, 4 (12), 11841–11847. https://doi.org/10.15680/IJIRSET.2015.0412025.10.15680/IJIRSET.2015.0412025 Search in Google Scholar

30. Sharif, S., Safari, H., Izman, S., & Kurniawan, D. (2014). Effect of High Speed Dry End Milling on Surface Roughness and Cutting Forces of Ti-6Al-4V ELI. Applied Mechanics and Materials, 493, 546–551.10.4028/www.scientific.net/AMM.493.546 Search in Google Scholar

31. Sulaiman, M. A., Haron, C., Ghani, J., & Kasim, M. (2014). Effect of High-Speed Parameters on Uncoated Carbide Tool in Finish Turning Titanium Ti-6Al-4V ELI. Sains Malaysiana, 43 (1), 111–116. Search in Google Scholar

32. Sulaiman, M. A., Che Haron, C. H., Ghani, J. A., & Kasim, M. S. (2013). Optimization of Turning Parameters for Titanium Alloy Ti-6Al-4V ELI Using the Response Surface Method (RSM). Journal of Advanced Manufacturing Technology, 7 (2), 11–28. Search in Google Scholar

33. Shin, H. G., Yoo, S. H., Park, S. W., & Hong, D. P. (2013). A Study on the Cutting Characteristics and Detection of the Abnormal Tool State in Turning of Ti-6Al-4V ELI. Applied Mechanics and Materials, 433–435, 2025–2030. https://doi.org/10.4028/www.scientific.net/amm.433-435.2025.10.4028/www.scientific.net/AMM.433-435.2025 Search in Google Scholar

34. Ghani, J. A., & Haron, C. C. H. (2015). Wear Mechanism of Coated and Uncoated Carbide Cutting Tool in Machining Process. Journal of Materials Research, 31 (13), 1873–1879.10.1557/jmr.2015.382 Search in Google Scholar

35. Ibharim, G. A., Arinal, H., Zulhanif, & Haron, C. H. C. (2013). Microstructure Alterations of Ti-6Al-4V ELI During Turning by Using Tungsten Carbide Inserts under Dry Cutting Condition. International Journal on Engineering and Technology Development, 1 (2), 37–40. Search in Google Scholar

36. Ibrahim, G. A., Che Haron, C. H., & Ghani, J. Abd. (2011). Evaluation of PVD-Inserts Performance and Surface Integrity when Turning Ti-6Al-4V ELI under Dry Machining. Advanced Materials Research, 264–265, 1050–1055. https://doi.org/10.4028/www.scientific.net/amr.264-265.105010.4028/www.scientific.net/AMR.264-265.1050 Search in Google Scholar

37. Ibharim, G. A., Haron, C., & Ghani, J. (2009). The Effect of Dry Machining on Surface Integrity of Titanium Alloy Ti-6Al-4V ELI. Journal of Applied Sciences, 9 (1), 121–127. DOI:10.3923/jas.2009. Search in Google Scholar

38. Ibharim, G., Haron, C. H. C., & Ghani, J. A. (2009). Surface Integrity of Ti-6Al-4V ELI when Machined Using Coated Carbide Tools under Dry Cutting Condition. International Journal of Mechanical and Materials Engineering, 4 (2), 191–196. Search in Google Scholar

39. Gusri, A. I., Haron, C. H. C., Jaharah, A. G., Ahmad, Y. Md. S., Zaid, Y., & Yanuar, B. (2011). Surface Quality of Ti-6%Al-4%V ELI when Machined Using CVD-Carbide Tools at High Cutting Speed. International conference on Advances in Materials and Processing Technologies, 1315 (1), 1107–1112. DOI:10.1063/1.3552328.10.1063/1.3552328 Search in Google Scholar

40. Dillibabu, R., Sivasakthivel, K., & Kumar, S. (2013). Optimization of Process Parameters in Dry and Wet Machining of Ti-6AL-4V ELI Using Taguchi Method. International Journal of Design and Manufacturing Technology, 4 (4), 15–21.10.34218/IJDMT.4.3.2013.30320130403003 Search in Google Scholar

41. Haron, C. H. C., Sulaiman, M. A., Ghani, J. A., Kasim, M. S., & Mohamad, E. (2016). Performance of Carbide Tool in High Speed Turning of Ti-6Al-4V ELI under Conventional Coolant and Minimal Quantity Lubrication. ARPN Journal of Engineering and Applied Sciences, 11 (7), 4817–4821. Search in Google Scholar

42. Sargade, V.G., Nipanikar, S. R., & Meshram, S.M. (2016). Analysis of Surface Roughness and Cutting Force During Turning of Ti6Al4V ELI in Dry Environment. International Journal of Industrial Engineering Computations, 7 (2), 257–266. DOI:10.5267/j.ijiec.2015. Search in Google Scholar

43. Karkalos, N. E., Galanis, N. I., & Markopoulos, A. P. (2016). Surface Roughness Prediction for the Milling of Ti–6Al–4V ELI Alloy with the Use of Statistical and Soft Computing Techniques. Measurement, 90, 25–35. https://doi.org/10.1016/j.measurement.2016. Search in Google Scholar

44. Bhongale, S., Khandare, Y., & Bobade, S. (2021). Review on Recent Advances in VLSI Multiplier. IJERT, 10 (11). Search in Google Scholar

45. Kyocera SGS. (2022). Picking the Right Tools for Machining Titanium. Available at https://kyocera-sgstool.co.uk/titanium-resources/titanium-machining-and-cutting/picking-the-right-tools-for-machining-titanium/ Search in Google Scholar

46. Bryant, W. A. (1998). U.S. Patent No. 5,718,541. Washington, DC: U.S. Patent and Trademark Office. Search in Google Scholar

47. Shanker, V. G., Subrahmanya Sai, A. S., Surappa, S., Reddy, C. L. S., & Saketh, R. N. (2021). Machining of Titanium Alloy Grade 5 (Ti-6Al-4V) by Using PVD Coated Cutting Tool Insert. AIP Conference Proceedings, 2317 (1), 020008.10.1063/5.0036135 Search in Google Scholar

48. MFG. (2022). Application of Titanium Alloy Milling in Cutting Tools. Available at https://www.machinemfg.com/application-of-titanium-alloy-milling-in-cutting-tools/ Search in Google Scholar

49. Tanzil, S., & Shaifullah, K. (2022). A Study on Machinability of Ti-6Al-4V – Process and Optimization. DOI: 10.13140/RG.2.2.32387.14882/1 Search in Google Scholar

50. Ramana, M. V., Vishnu, A. V., Rao, G. K. M., & Rao, D. H. (2012). Experimental Investigations, Optimization of Process Parameters and Mathematical Modeling in Turning of Titanium Alloy under Different Lubricant Conditions. Journal of Engineering, 2 (1), 86–101.10.9790/3021-02186101 Search in Google Scholar

51. Shokrani, A., & Newman, S. T. (2019). A New Cutting Tool Design for Cryogenic Machining of Ti–6Al–4V Titanium Alloy. Materials, 12 (3), 477.10.3390/ma12030477638514630720742 Search in Google Scholar

52. Pramanik, A., & Littlefair, G. (2015). Machining of Titanium Alloy (Ti-6Al-4V)—Theory to Application. Machining Science and Technology, 19 (1), 1–49.10.1080/10910344.2014.991031 Search in Google Scholar

53. Krishnaraj, V., Krishna, B. H., & Sheikh-Ahmad, J. Y. (2016). Study of Finish Milling of Titanium Alloy (TI6AL4V). International Journal of Machining and Machinability of Materials, 18 (5–6), 634–647.10.1504/IJMMM.2016.078981 Search in Google Scholar

54. Veiga, C., Davim, J. P., & Loureiro, A. J. R. (2013). Review on Machinability of Titanium Alloys: The Process Perspective. Rev. Adv. Mater. Sci, 34 (2), 148–164. Search in Google Scholar

55. Vijay, S., & Krishnaraj, V. (2013). Machining Parameters Optimization in End Milling of Ti-6Al-4 V. Procedia Engineering, 64, 1079–1088.10.1016/j.proeng.2013.09.186 Search in Google Scholar

56. Gandreddi, J. P., Gerins, E., Kromanis, A., & Lungevics, J. (2020). Technological Assurance of Surface Roughness in Pocket Milling. Annals of DAAAM & Proceedings, 7 (1).10.2507/31st.daaam.proceedings.080 Search in Google Scholar

57. Kumar, M., & Bajpai, V. (2020). Experimental Investigation of Top Burr Formation in High-Speed Micro-Milling of Ti6Al4V Alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234 (4), 730–738.10.1177/0954405419883049 Search in Google Scholar

58. Karolewska, K., & Ligaj, B. (2019). Comparison Analysis of Titanium Alloy Ti6Al4V Produced by Metallurgical and 3D Printing Method. AIP Conference Proceedings, 2077 (1), 020025. AIP Publishing LLC.10.1063/1.5091886 Search in Google Scholar

59. NS Tool. (2022). High Efficient Milling on Titanium Alloy Ti-6Al-4V MSXH440R / Power Radius End Mill. Available at https://ns-tool.com/technology/case/sample20/ Search in Google Scholar

60. Kozlov, V., & Zhang, J. Y. (2016). Strength of Cutting Tool in Titanium Alloy Machining. Key Engineering Materials, 685, 427–431.10.4028/www.scientific.net/KEM.685.427 Search in Google Scholar

Empfohlene Artikel von Trend MD