1. bookVolumen 59 (2022): Heft 6 (December 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Complex Type II Solar Radio Event on 4 July 2022

Online veröffentlicht: 07 Jan 2023
Volumen & Heft: Volumen 59 (2022) - Heft 6 (December 2022)
Seitenbereich: 22 - 29
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch

1. White, S. M. (2007). Solar Radio Bursts and Space Weather. Asian Journal of Physics, 16, 189–207. Search in Google Scholar

2. Dulk, G. (2001). Solar Radio Emissions. Planetary Radio Emissions. Search in Google Scholar

3. Thejappa, G., Zlobec, P., & MacDowall, R. J. (2003). Polarization and Fragmentation of Solar Type II Radio Bursts. The Astrophysical Journal, 592 (2), 1234–1240. doi: 10.1086/375859. DOI öffnenSearch in Google Scholar

4. Ergun, R. E. (1998). Wind Spacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type III Radio Bursts. The Astrophysical Journal, 503 (1), 435–445. doi: 10.1086/305954. DOI öffnenSearch in Google Scholar

5. Reid, H. A. S., & Ratcliffe, H. (2014). A Review of Solar Type III Radio Bursts. Research in Astronomy and Astrophysics, 14 (7), 773–804. doi: 10.1088/1674-4527/14/7/003. DOI öffnenSearch in Google Scholar

6. Chrysaphi, N., Reid, H. A. S., & Kontar, E. P. (2020). First Observation of a Type II Solar Radio Burst Transitioning between a Stationary and Drifting State. The Astrophysical Journal, 893 (2). doi: 10.3847/1538-4357/ab80c1. DOI öffnenSearch in Google Scholar

7. Aurass, H., & Mann, G. (2004). Radio Observation of Electron Acceleration at Solar Flare Reconnection Outflow Termination Shocks. The Astrophysical Journal, 615 (1), 526–530. doi: 10.1086/424374. DOI öffnenSearch in Google Scholar

8. Aurass, H., Vršnak, B., & Mann, G. (2002). Shock-Excited Radio Burst from Reconnection Outflow Jet? Astronomy and Astrophysics, 384, 273–281. doi: 10.1051/0004-6361:20011735. DOI öffnenSearch in Google Scholar

9. Kallunki, J., McKay, D., & Tornikoski, M. (2021). First Type III Solar Radio Bursts of Solar Cycle 25. Solar Physics, 296 (4). doi: 10.1007/s11207-021-01790-9. DOI öffnenSearch in Google Scholar

10. Kallunki, J. (2018). Solar Observing System for Radio Frequencies 5–120 MHz. Astronomische Nachrichten, 339 (656), 656–660. doi: 10.1002/asna.201913545. DOI öffnenSearch in Google Scholar

11. Kallunki, J., Monstein, C., Kirves, P., Tammi, J., & Mujunen, A. (2022). Calibration of CALLISTO data. Aalto University publication series Science + Technology, 1/2022. Available at http://urn.fi/URN:ISBN:978-952-64-0795-1 Search in Google Scholar

12. Melnik, V. N. (2015). Decameter Type III Bursts with Changing Frequency Drift-Rate Signs. Solar Physics, (290) 1, 193–203. doi: 10.1007/s11207-014-0577-8. DOI öffnenSearch in Google Scholar

13. Li, B., Cairns, I. H., & Robinson, P. A. (2011). Effects of Spatial Variations in Electron and Ion Temperatures on Coronal Type III Bursts. The Astrophysical Journal, 730 (1). Search in Google Scholar

14. Pohjolainen, S., van Driel-Gesztelyi, L., Culhane, J. L., Manoharan, P. K., & Elliott, H. A. (2007). CME Propagation Characteristics from Radio Observations. Solar Physics, 244 (1–2), 167–188. doi: 10.1007/s11207-007-9006-6. DOI öffnenSearch in Google Scholar

15. Armatas, S. (2019). Detection of Spike-Like Structures Near the Front of Type-II Bursts. Astronomy and Astrophysics, 624, A76. doi: 10.1051/0004-6361/201834982. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo