1. bookVolumen 59 (2022): Heft 5 (October 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Comparison of Passive and Active Fiducials for Optical Tracking

Online veröffentlicht: 13 Oct 2022
Volumen & Heft: Volumen 59 (2022) - Heft 5 (October 2022)
Seitenbereich: 46 - 57
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2255-8896
Erstveröffentlichung
18 Mar 2008
Erscheinungsweise
6 Hefte pro Jahr
Sprachen
Englisch

1. Khor, W. S., Baker, B., Amin, K., Chan, A., Patel, K., & Wong, J. (2016). Augmented and Virtual Reality in Surgery—The Digital Surgical Environment: Applications, Limitations and Legal Pitfalls. Annals of Translational Medicine, 4 (23), 454–454. https://doi.org/10.21037/atm.2016.12.2310.21037/atm.2016.12.23522004428090510 Search in Google Scholar

2. Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. In: Proceedings of the 13th International Conference on Applied Computer and Applied Computational Science (ACACOS’14), (pp. 205–214). 23–25 April 2014, Kuala Lumpur, Malaysia. Search in Google Scholar

3. Fida, B., Cutolo, F., di Franco, G., Ferrari, M., & Ferrari, V. (2018). Augmented Reality in Open Surgery. Updates in Surgery, 70 (3), 389–400. https://doi.org/10.1007/s13304-018-0567-810.1007/s13304-018-0567-830006832 Search in Google Scholar

4. de Cunsel, S. (2019). Evaluation of Augmented Reality (AR) Displays Performance Based on Human Visual Perception. Digital Optical Technologies, 110620V. https://doi.org/10.1117/12.252761310.1117/12.2527613 Search in Google Scholar

5. Tang, B., & Cao, S. (2020). A Review of VSLAM Technology Applied in Augmented Reality. IOP Conference Series: Materials Science and Engineering, 782 (4). https://doi.org/10.1088/1757-899X/782/4/04201410.1088/1757-899X/782/4/042014 Search in Google Scholar

6. Ahn, J., Choi, H., Hong, J., & Hong, J. (2019). Tracking Accuracy of a Stereo Camera-Based Augmented Reality Navigation System for Orthognathic Surgery. Journal of Oral and Maxillofacial Surgery, 77 (5), 1070.e1-1070.e11. https://doi.org/10.1016/j.joms.2018.12.03210.1016/j.joms.2018.12.03230707984 Search in Google Scholar

7. Welch, G., & Foxlin, E. (2002). Motion Tracking: No Silver Bullet, but a Respectable Arsenal. IEEE Computer Graphics and Applications, 22 (6), 24–38. https://doi.org/10.1109/MCG.2002.104662610.1109/MCG.2002.1046626 Search in Google Scholar

8. Nishino, H. (2010). A 6DoF fiducial tracking method based on topological region adjacency and angle information for tangible interaction. In: Proceedings of the 4th International Conference on Tangible, Embedded, and Embodied Interaction – TEI ’10 (vol. 18, p. 253). New York, New York, USA: ACM Press. https://doi.org/10.1145/1709886.170993710.1145/1709886.1709937 Search in Google Scholar

9. Furtado, J. S., Liu, H. H. T., Lai, G., Lacheray, H., & Desouza-Coelho, J. (2019). Comparative Analysis of OptiTrack Motion Capture Systems. Lecture Notes in Mechanical Engineering, 15–31. https://doi.org/10.1007/978-3-030-17369-2_210.1007/978-3-030-17369-2_2 Search in Google Scholar

10. Belghit, H., Bellarbi, A., Zenati, N., & Otmane, S. (2018). Vision-based Pose Estimation for Augmented Reality: A Comparison Study. ArXiv, 49413387. Search in Google Scholar

11. Cutolo, F., Mamone, V., Carbonaro, N., Ferrari, V., & Tognetti, A. (2020). Ambiguity-Free Optical–Inertial Tracking for Augmented Reality Headsets. Sensors (Switzerland), 20 (5). https://doi.org/10.3390/s2005144410.3390/s20051444708573832155808 Search in Google Scholar

12. Sorriento, A., Porfido, M. B., Mazzoleni, S., Calvosa, G., Tenucci, M., Ciuti, G., & Dario, P. (2020). Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Reviews in Biomedical Engineering, 13 (c), 212–232. https://doi.org/10.1109/RBME.2019.293909110.1109/RBME.2019.293909131484133 Search in Google Scholar

13. Bi, S., Gu, Y., Zou, J., Wang, L., Zhai, C., & Gong, M. (2021). High Precision Optical Tracking System Based on near Infrared Trinocular Stereo Vision. Sensors, 21 (7), 2528. https://doi.org/10.3390/s2107252810.3390/s21072528803843833916582 Search in Google Scholar

14. Ballestin, G., Solari, F., & Chessa, M. (2018). Perception and action in peripersonal space: A comparison between video and optical see-through augmented reality devices. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 184–189). 16–20 October 2018, Munich, Germany. https://doi.org/10.1109/ISMAR-Adjunct.2018.0006310.1109/ISMAR-Adjunct.2018.00063 Search in Google Scholar

15. Javaid, M., & Haleem, A. (2020). Virtual Reality Applications toward Medical Field. Clinical Epidemiology and Global Health, 8 (2), 600–605. https://doi.org/10.1016/j.cegh.2019.12.01010.1016/j.cegh.2019.12.010 Search in Google Scholar

16. Zabels, R., Osmanis, K., Narels, M., Smukulis, R., & Osmanis, I. (2019). Integrated Head-Mounted Display System Based on a Multi-Planar Architecture, Advances in Display Technologies IX, 10942, 51–61. https://doi.org/10.1117/12.250995410.1117/12.2509954 Search in Google Scholar

17. Hai-Xia, X., Wei, Z., & Jiang, Z. (2015). 3D visual SLAM with a Time-of-Flight camera. In 2015 IEEE Workshop on Signal Processing Systems (SiPS) (pp. 1–6). 14–16 October 2015, Hangzhou, China. https://doi.org/10.1109/SiPS.2015.734499210.1109/SiPS.2015.7344992 Search in Google Scholar

18. Kunz, C., Maurer, P., Kees, F., Henrich, P., Marzi, C., Hlaváč, M., … & Mathis-Ullrich, F. (2020). Infrared Marker Tracking with the HoloLens for Neurosurgical Interventions. Current Directions in Biomedical Engineering, 6 (1), 1–4. https://doi.org/10.1515/cdbme-2020-002710.1515/cdbme-2020-0027 Search in Google Scholar

19. Pérez-Pachón, L., Poyade, M., Lowe, T., & Gröning, F. (2020). Image Overlay Surgery Based on Augmented Reality: A Systematic Review. Advances in Experimental Medicine and Biology, 1260, 175–195. https://doi.org/10.1007/978-3-030-47483-6_1010.1007/978-3-030-47483-6_1033211313 Search in Google Scholar

20. Atracsys. (2017). Data Sheet: fusionTrack 500. Available at https://www.atracsys-measurement.com/wp-content/documents/fTk500-datasheet.pdf Search in Google Scholar

21. Khaleghi, B., & Rosing, T. Š. (2019). Thermal-Aware Design and Flow for FPGA Performance Improvement. Proceedings of the 2019 Design, Automation and Test in Europe Conference and Exhibition, DATE 2019, 342–347. https://doi.org/10.23919/DATE.2019.871518310.23919/DATE.2019.8715183 Search in Google Scholar

22. Israel, P. A. J., Carlos, P. O. J., Jorge, Á. S., Saúl, T. A., Emilio, V. S. J., & Susana, V. H. (2014). Design and construction of tools with reflecting-disks fiducials for optical stereo trackers: An afforable technique for navigation tools development. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2014, 5684680. 29 September–3 October 2014, Ciudad del Carmen, Mexico. https://doi.org/10.1109/ICEEE.2014.697825810.1109/ICEEE.2014.6978258 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo