Zitieren

1. Puttnam, B. J., Rademacher, G., & Luís, R. S. (2021). Space-Division Multiplexing for Optical Fibre Communications. Optica, 8 (9), 1186–1203.10.1364/OPTICA.427631 Search in Google Scholar

2. Yoshikane, N., & Tsuritani, T. (2020). Recent progress in space-division multiplexing optical network technology. In: 2020 International Conference on Optical Network Design and Modeling (ONDM) (pp. 1–4). 18–21 May 2020, Barcelona, Spain, IEEE.10.23919/ONDM48393.2020.9133031 Search in Google Scholar

3. Aiso, K., Tashiro, Y., Suzuki, T., & Yagi, T. (2001). Development of Er/Yb Co-doped Fibre for High-Power Optical Amplifiers. Furukawa Electric Review, 35–39. Search in Google Scholar

4. Supe, A., Olonkins, S., Udalcovs, A., Senkans, U., Mūrnieks, R., Gegere, L., … & Bobrovs, V. (2021). Cladding-Pumped Erbium/Ytterbium Co-Doped Fibre Amplifier for C-Band Operation in Optical Networks. Applied Sciences, 11 (4), 1702.10.3390/app11041702 Search in Google Scholar

5. Selvarajan, A., Kar, S., & Srinivas, T. (2003). Optical Fibre Communication: Principles and Systems. Tata McGraw-Hill Education. Search in Google Scholar

6. Filippov, V., Kerttula, J., Chamorovskii, Y., Golant, K., & Okhotnikov, O. G. (2010). Highly Efficient 750 W Tapered Double-Clad Ytterbium Fibre Laser. Optics Express, 18 (12), 12499–12512.10.1364/OE.18.01249920588376 Search in Google Scholar

7. Lei, C., Chen, Z., Leng, J., Gu, Y., & Hou, J. (2017). The Influence of Fused Depth on the Side-Pumping Combiner for All-Fibre Lasers and Amplifiers. Journal of Lightwave Technology, 35 (10), 1922–1928.10.1109/JLT.2017.2688347 Search in Google Scholar

8. Supe, A., Spolitis, S., Elsts, E., Murnieks, R., Doke, G., Senkans, U., ... & Bobrovs, V. (2020). Recent developments in cladding-pumped doped fibre amplifiers for telecommunications systems. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1–6). 19–23 July 2020, Bari, Italy, IEEE.10.1109/ICTON51198.2020.9203436 Search in Google Scholar

9. Choi, I. S., Park, J., Jeong, H., Kim, J. W., Jeon, M. Y., & Seo, H. S. (2018). Fabrication of 4× 1 Signal Combiner for High-Power Lasers Using Hydrofluoric Acid. Optics Express, 26 (23), 30667–30677.10.1364/OE.26.03066730469960 Search in Google Scholar

10. Zhu, X., Wang, K., Wang, F., Zhao, C., & Cai, Y. (2018). Coupling Efficiency of a Partially Coherent Radially Polarized Vortex Beam into a Single-Mode Fibre. Applied Sciences, 8 (8), 1313.10.3390/app8081313 Search in Google Scholar

11. Guay-Lord, R., Attendu, X., Lurie, K. L., Majeau, L., Godbout, N., Bowden, A. K., ... & Boudoux, C. (2016). Combined Optical Coherence Tomography and Hyperspectral Imaging Using a Double-Clad Fibre Coupler. Journal of Biomedical Optics, 21 (11), 116008.10.1117/1.JBO.21.11.11600827829103 Search in Google Scholar

12. Dikmelik, Y., & Davidson, F. M. (2005). Fibre-Coupling Efficiency for Free-Space Optical Communication through Atmospheric Turbulence. Applied Optics, 44 (23), 4946–4952.10.1364/AO.44.00494616114533 Search in Google Scholar

13. Eydi, N., Feghhi, S. A. H., & Jafari, H. (2021). Comprehensive Approach to Determination of Space Proton-Induced Displacement Defects in Silica Optical Fiber. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 502, 95–101.10.1016/j.nimb.2021.06.014 Search in Google Scholar

14. Novoa, D., & Joly, N. Y. (2021). Specialty Photonic Crystal Fibers and Their Applications. Crystals, 11 (7), 739.10.3390/cryst11070739 Search in Google Scholar

15. Ahmad, P., Khandaker, M. U., Rehman, F., Muhammad, N., Faruque, M. R. I., Ullah, Z., ... & Bradley, D. A. (2021). Facile Synthesis of High-Quality Nano-size 10B-Enriched Fibers of Hexagonal Boron Nitride. Crystals, 11 (3), 222.10.3390/cryst11030222 Search in Google Scholar

16. Nathanael, A. J., & Oh, T. H. (2021). Encapsulation of Calcium Phosphates on Electrospun Nanofibers for Tissue Engineering Applications. Crystals, 11 (2), 199.10.3390/cryst11020199 Search in Google Scholar

17. Fu, J., Chen, Y., Huang, Z., Yu, F., Wu, D., Pan, J., ... & Leng, Y. (2021). Photoionization-Induced Broadband Dispersive Wave Generated in an AR-filled Hollow-Core Photonic Crystal Fiber. Crystals, 11 (2), 180.10.3390/cryst11020180 Search in Google Scholar

18. Itoh, T., Araki, T., Ashida, M., Iwata, T., Muro, K., & Yamada, N. (2011). Optical properties. In: Springer Handbook of Metrology and Testing (pp. 587–663). Springer, Berlin, Heidelberg.10.1007/978-3-642-16641-9_11 Search in Google Scholar

19. Shukla, P., & Kaur, K. P. (2013). Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate. International Journal of Engineering and Advanced Technology (IJEAT), 2 (5), 487–490. Search in Google Scholar

20. Standard, F. (1996). 1037C: Telecommunications: Glossary of Telecommunication Terms. National Communication System. Technology and Standards Division. Washington, DC: General Services Administration. Information Technology Service. Search in Google Scholar

21. Chen, X., Xiao, Q. R., Jin, G. Y., Yan, P., & Gong, M. L. (2015). High Coupling Efficiency and Low Signal Light Loss (2+1)× 1 Coupler. Chinese Physics B, 24 (6), 064208.10.1088/1674-1056/24/6/064208 Search in Google Scholar

22. Xiao, Q. R., Yan, P., Yin, S., Hao, J., & Gong, M. (2010). 100 W Ytterbium-Doped Monolithic Fibre Laser with Fused Angle-Polished Side-Pumping Configuration. Laser Physics Letters, 8 (2), 125.10.1002/lapl.201010090 Search in Google Scholar

23. Zhu, X., Schülzgen, A., Li, H., Li, L., Wang, Q., Suzuki, S., … & Peyghambarian, N. (2008). Single-Transverse-Mode Output from a Fibre Laser Based on Multimode Interference. Optics Letters, 33 (9), 908–910.10.1364/OL.33.00090818451935 Search in Google Scholar

24. Pachon, E. G., Franco, M. A., & Cordeiro, C. M. (2012). Spectral bandwidth analysis of high sensitivity refractive index sensor based on multimode interference fiber device. In: OFS2012 22nd International Conference on Optical Fiber Sensors (vol. 8421, p. 84217Q). International Society for Optics and Photonics.10.1117/12.969928 Search in Google Scholar

25. Miyazaki, K., Honda, M., Kudo, T., & Kawamura, T. (1975). Theoretical and experimental considerati ons of optical fibre connector. In: Optical Fibre Transmission (p. WA4). Optical Society of America. Search in Google Scholar

26. Tsuchiya, H., Nakagome, H., Shimizu, N., & Ohara, S. (1977). Double Eccentric Connectors for Optical Fibres. Applied Optics, 16 (5), 1323–1331.10.1364/AO.16.00132320168697 Search in Google Scholar

27. Knox, R. M., & Toulios, P. P. (1970). Integrated circuits for the millimeter through optical frequency range. In Proc. Symp. Submillimeter Waves (vol. 20, pp. 497–515). Brooklyn, NY. Search in Google Scholar

28. Burns, W. K., & Milton, A. (1975) Mode Conversion in Planar-Dielectric Separating Waveguides. IEEE Journal of Quantum Electronics, 11 (1), 32–39.10.1109/JQE.1975.1068511 Search in Google Scholar

29. Okamoto, K. (1990). Theoretical Investigation of Light Coupling Phenomena in Wavelength-Flattened Couplers. Journal of Lightwave Technology, 8 (5), 678–683.10.1109/50.54474 Search in Google Scholar

30. Shibayama, J., Yamauchi, J., & Nakano, H. (2003). Application of the finite-difference beam-propagation method to optical waveguide analysis. In: 17th International Conference on Applied Electromagnetics and Communications (pp. 262–265). 1–3 October 2003, Dubrovnik, Croatia, IEEE. Search in Google Scholar

31. Optiwave. (n.d.). Optiwave Photonic Software. Available at https://www.optiwave.com/ Search in Google Scholar

32. Pepper, D. W., & Heinrich, J. C. (2017). The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL. CRC press.10.1201/9781315395104 Search in Google Scholar

33. Deibel, J. A., Wang, K., Escarra, M. D., & Mittleman, D. M. (2006). Enhanced Coupling of Terahertz Radiation to Cylindrical Wire Waveguides. Optics Express, 14 (1), 279–290.10.1364/OPEX.14.00027919503341 Search in Google Scholar

34. Wen, J., Romanov, S., & Peschel, U. (2009). Excitation of Plasmonic Gap Waveguides by Nanoantennas. Optics Express, 17 (8), 5925–5932.10.1364/OE.17.00592519365411 Search in Google Scholar

35. Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. Acs Photonics, 6 (2), 553–557.10.1021/acsphotonics.8b01628 Search in Google Scholar

36. Pidishety, S., Srinivasan, B., & Brambilla, G. (2016). All-Fiber Fused Coupler for Stable Generation of Radially and Azimuthally Polarized Beams. IEEE Photonics Technology Letters, 29 (1), 31–34.10.1109/LPT.2016.2625421 Search in Google Scholar

37. Chamanzar, M., Scopelliti, M. G., Bloch, J., Do, N., Huh, M., Seo, D., ... & Maharbiz, M. M. (2019). Ultrasonic Sculpting of Virtual Optical Waveguides in Tissue. Nature Communications, 10 (1), 1–10.10.1038/s41467-018-07856-w632702630626873 Search in Google Scholar

38. Zhang, Y., Zhu, W., Fan, P., He, Y., Zhuo, L., Che, Z., ... & Chen, Z. (2020). A Broadband and Low-Power Light-Control-Light Effect in a Fiber-Optic Nano-Optomechanical System. Nanoscale, 12 (17), 9800–9809.10.1039/C9NR10953F32328601 Search in Google Scholar

39. Comsol. (n.d.). Mach–Zehnder Modulator. Available at thttps://www.comsol.com/model/mach-8211-zehnder-modulator-5061 Search in Google Scholar

40. Ou, P., Yan, P., Gong, M., & Wei, W. (2004). Coupling Efficiency of Angle-Polished Method for Side-Pumping Technology. Optical Engineering, 43 (4), 816–821.10.1117/1.1666855 Search in Google Scholar

41. Xiao, Q., Chen, X., Ren, H., Yan, P., & Gong, M. (2013). Fibre Coupler for Mode Selection and High-Efficiency Pump Coupling. Optics Letters, 38 (7), 1170–1172.10.1364/OL.38.00117023546280 Search in Google Scholar

42. Fanlong, D., Xinhai, Z., & Feng, S. (2018). Side Coupler Applied in a Multi-Pumped Yb-Doped Triple-Clad Fibre Laser. Laser Physics, 28 (12), 125106.10.1088/1555-6611/aae185 Search in Google Scholar

43. Ou, P., Yan, P., Gong, M., Wei, W., & Yuan, Y. (2004). Studies of Pump Light Leakage out of Couplers for Multi-Coupler Side-Pumped Yb-doped Double-Clad Fibre Lasers. Optics Communications, 239 (4–6), 421–428.10.1016/j.optcom.2004.05.055 Search in Google Scholar

44. Mohammed, W. S., Mehta, A., & Johnson, E. G. (2004). Wavelength Tunable Fibre Lens Based on Multimode Interference. Journal of Lightwave Technology, 22 (2), 469.10.1109/JLT.2004.824379 Search in Google Scholar

45. Guzmán-Sepúlveda, J. R., Guzmán-Cabrera, R., & Castillo-Guzmán, A. A. (2021). Optical Sensing Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing Schemes. Sensors, 21 (5), 1862.10.3390/s21051862796211833800041 Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik