Uneingeschränkter Zugang

Lattice Dynamics Calculations for Mg1-XZnxO Solid Solutions


Zitieren

1. Rohskopf, A., Seyf, H.R., Gordiz, K., Tadano, T., & Henry, A. (2017). Empirical Interatomic Potentials Optimized for Phon Properties. Computational Materials, 3, 1–7.10.1038/s41524-017-0026-y Search in Google Scholar

2. Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., Venkatesan, T., & Shen, H. (2002). Realization of Band Gap above 5.0 eV in Metastable Cubic-Phase MgxZn1-xO Allow Films. Appl. Phys. Lett., 80, 1529.10.1063/1.1456266 Search in Google Scholar

3. Hu, Y., Cai, B., Hu, Z., & Liu, Y. (2015). The Impact of Mg Content On the Structural, Electrical and Optical Properties of MgZno Alloys: A First Principles Study. Current Applied Physics, 15 (3), 423–428.10.1016/j.cap.2015.01.015 Search in Google Scholar

4. Maznichenko, I., Ernst, A., Bouhassoune, M., & Henk, J. (2009). Structural Phase Transitions and Fundamental Band Gaps of MgxZn1-xO Alloys from First Principles. Physical Review B, 80, 144101.10.1103/PhysRevB.80.144101 Search in Google Scholar

5. Schleife, A., Eisenacher, M., Rödl, C., Fuchs, F., Furthmüller, J., & Bechstedt, F. (2010). Ab Initio Description of Heterostructural Alloys: Thermodynamic and Structural Properties of MgxZn1-xO and CdxZn1-xO. Phys. Rev. B, 81, 245210. Search in Google Scholar

6. Yang, J.-L., Liu, K.-W., & Shen, D.-Z. (2017). Recent Progress of ZnMgO Ultraviolet Detector. Chin. Phys. B, 26 (4), 047308.10.1088/1674-1056/26/4/047308 Search in Google Scholar

7. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., … & Persson, K.A. (2013). The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Materials, 1, 011002.10.1063/1.4812323 Search in Google Scholar

8. Hahn, T. (2016). International Tables for Crystallography. Volume A. Springer. Search in Google Scholar

9. Tian, F., Duan, D., Li, D., Chen, C., Sha, X., Zhao, Z., … & Cui, T. (2014). Miscibility and Ordered Structures of MgO-ZnO Alloys under High Pressure. Sci. Rep., 4, 5759.10.1038/srep05759 Search in Google Scholar

10. LAAMPS Tube. (n.d.). Buckingham Potential. Available at http://lammpstube.com/2020/02/10/buckingham-potential/ Search in Google Scholar

11. Chapters 8 & 9 on Potential Functions. Available at http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L4.pdf Search in Google Scholar

12. CRYSTAL. (n.d.). Crystal17. Available at https://www.crystal.unito.it/index.php Search in Google Scholar

13. Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C., Covalleri, B., Maschio, L., … & Kirtman, B.. (2018). Quantum-Mechanical Condensed Matter Simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8 (39). doi :10.1002/wcms.1360.10.1002/wcms.1360 Search in Google Scholar

14. Curtin University. (n.d.). GULP. Available at http://gulp.curtin.edu.au/gulp/ Search in Google Scholar

15. Gale, J.D. (1997). GULP – A Computer Program for the Symmetry Adapted Simulation of Solids. JCS Faraday Trans., 93, 629.10.1039/a606455h Search in Google Scholar

16. CRYSTAL. (n.d.). CRYSTAL Basis Sets. Available at https://www.crystal.unito.it/basis-sets.php Search in Google Scholar

17. Lewis, G.V., & Catlow, C.R.A. (1985). Potential Models for Ionic Oxides. Journal of Physics C: Solid State Physics, 18 (6), 1149–1161.10.1088/0022-3719/18/6/010 Search in Google Scholar

18. Binks, D.J. (1994). Computational Modelling of Zinc Oxide and Related Oxide Ceramics. Doctoral Thesis. University of Surrey, Surrey. Search in Google Scholar

19. Al-Qasir, I., Jisrawi, N., Gillette, V., & Qteish. A.H. (2015). Thermal Neutron Scattering Cross Sections of Beryllium and Magnesium Oxides. Annals of Nuclear Energy, 87, 242. doi:10.1016/j. anucene.2015.09.00610.1016/j.anucene.2015.09.006 Search in Google Scholar

20. Mankad, V., Gupta, S.K., & Jha, P.K. (2016). Thermodynamic Properties of Zinc Oxide [001] Nanowires via First Principles Calculations. Adv. Mater. Lett.,7 (3), 100. doi: 10.5185/amlett.2016.614710.5185/amlett.2016.6147 Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik