Zitieren

1. Korotchenkov, G. (2013). Handbook of gas sensor materials. New York: Springer. DOI:10.1007/978-1-4614-7165-310.1007/978-1-4614-7165-3 Search in Google Scholar

2. Liu, X., Cheng, S, Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A Survey on Gas Sensing Technology. Sensors, 12, 9635–9665. DOI: 10.3390/s12070963510.3390/s120709635344412123012563 Search in Google Scholar

3. Janata, J. (2009). Principles of chemical sensors. New York: Springer.10.1007/b136378 Search in Google Scholar

4. Joshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira, O. N., & Lin, L. (2018). A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchimica Acta, 185 (4), 185–213. DOI:10.1007/s00604-018-2750-510.1007/s00604-018-2750-529594538 Search in Google Scholar

5. Kampa, M., & Castanas, E. (2008). Human Health Effects of Air Pollution. Environmental Pollution, 151, 362–367. DOI: 10.1016/j.envpol.2007.06.01210.1016/j.envpol.2007.06.01217646040 Search in Google Scholar

6. Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., … & Preuss, P. W. (2013). The Changing Paradigm of Air Pollution Monitoring, Environmental Science & Technology, 47, 11369−11377. DOI:10.1021/es402260210.1021/es402260223980922 Search in Google Scholar

7. Babadjouni, R., Hodis, D., Radwanski, R., Durazo, R., Patel, A., Liu, Q., & Mack, W. (2017). Clinical Effects of Air Pollution on the Central Nervous System: A Review. Journal of Clinical Neuroscience, 43, 16–24. DOI:10.1016/j.jocn.2017.04.02810.1016/j.jocn.2017.04.028554455328528896 Search in Google Scholar

8. Glencross, D., Ho, T., Camiсa, N., Hawrylowicz, C., & Pfeffer, P. (2020). Air Pollution and its Effects on the Immune System. Free Radical Biology and Medicine, 151, 56–68. DOI:10.1016/j. freeradbiomed.2020.01.179 Search in Google Scholar

9. Lobur, M., Korpyljov, D., Jaworski, N., Iwaniec, M., & Marikutsa, U. (2020). Arduino based ambient air pollution sensing system. In IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), (pp. 32–35), 22-26 April 2020, Lviv, Ukraine: Lviv Polytechnic National University. DOI: 10.1109/MEMSTECH49584.2020.9109460.10.1109/MEMSTECH49584.2020.9109460 Search in Google Scholar

10. Hasenfratz D., Saukh O., Sturzenegger S., &Thiele L. (2012) Participatory air pollution monitoring using smartphones. In Proceedings of the 2nd International Workshop on Mobile Sensing, (pp. 1–5), 16–20 April 2012, Beijing, China. Search in Google Scholar

11. Galstyan, V., Comini, E., Baratto, C., Faglia, G., & Sberveglieri, G. (2015). Nanostructured ZnO Chemical Gas Sensors. Ceramics International, 41, 14239–14244. DOI:10.1016/j.ceramint.2015.07.05210.1016/j.ceramint.2015.07.052 Search in Google Scholar

12. Zhu, L., & Zeng, W. (2017). Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A, 267, 242–261. DOI:10.1016/j. sna.2017.10.021 Search in Google Scholar

13. Dey, A. (2018). Semiconductor Metal Oxide Gas Sensors: A Review. Materials Science & Engineering B, 229, 206–217. DOI: 10.1016/j.mseb.2017.12.03610.1016/j.mseb.2017.12.036 Search in Google Scholar

14. Yoon, J., Kim, H., Jeong, H., & Lee, J. (2014). Gas Sensing Characteristics of P-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sensors and Actuators B, 202, 263–271. DOI:10.1016/j.snb.2014.05.08110.1016/j.snb.2014.05.081 Search in Google Scholar

15. Moseley, P. T. (2017). Progress in the Development of Semiconducting Metal Oxide Gas Sensors: A Review. Measurement Science and Technology, 28 (8), 082001 (15 p.). DOI:10.1088/1361-6501/aa744310.1088/1361-6501/aa7443 Search in Google Scholar

16. Jing, Z., & Zhan, J. (2008). Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials, 20 (23), 4547–4551. DOI:10.1002/adma.20080024310.1002/adma.200800243 Search in Google Scholar

17. Liu, C., Zhao, L., Wang, B., Sun, P., Wang, Q., … & Lu, G. (2017). Acetone Gas Sensor Based on NiO/ZnO Hollow Spheres: Fast Response and Recovery, and Low (ppb) Detection Limit. Journal of Colloid and Interface Science, 495, 207–215. DOI:10.1016/j.jcis.2017.01.10610.1016/j.jcis.2017.01.10628237094 Search in Google Scholar

18. Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO Nanopetals and its Application as NO2 Gas Sensor. Materials Letters, 152, 189–191. DOI:10.1016/j.matlet.2015.03.11210.1016/j.matlet.2015.03.112 Search in Google Scholar

19. Yu, L., Guo, F., Liu, S., Yang, B., Jiang, Y., … & Fan, X. (2016). Both Oxygen Vacancies Defects and Porosity Facilitated NO 2 Gas Sensing Response in 2D ZnO Nanowalls at Room Temperature. Journal of Alloys and Compounds, 682, 352–356. DOI:10.1016/j.jallcom.2016.05.05310.1016/j.jallcom.2016.05.053 Search in Google Scholar

20. Zhu, L., & Zeng, W. (2017). Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242–261. DOI:10.1016/j.sna.2017.10.02110.1016/j.sna.2017.10.021 Search in Google Scholar

21. Yoon, J.-W., Kim, H.-J., Jeong, H.-M., & Lee, J.-H. (2014). Gas Sensing Characteristics of p-Type Cr2O3 and Co3O4 Nanofibers Depending on Inter-Particle Connectivity. Sensors and Actuators B: Chemical, 202, 263–271. DOI:10.1016/j.snb.2014.05.08110.1016/j.snb.2014.05.081 Search in Google Scholar

22. Deng, S., Chen, N., Deng, D., Li, Y., Xing, X., & Wang, Y. (2015). Meso- and Macroporous Coral-like Co3O4 for VOCs Gas Sensor. Ceramics International, 41 (9), 11004–11012. DOI:10.1016/j.ceramint.2015.05.04510.1016/j.ceramint.2015.05.045 Search in Google Scholar

23. Zoolfakar, A. S., Ahmad, M. Z., Rani, R. A., Ou, J. Z., Balendhran, S., … & Kalantarzadeh, K. (2013). Nanostructured Copper Oxides as Ethanol Vapour Sensors. Sensors and Actuators B: Chemical, 185, 620–627. DOI:10.1016/j.snb.2013.05.04210.1016/j.snb.2013.05.042 Search in Google Scholar

24. Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10 (6), 5469–5502. DOI:10.3390/s10060546910.3390/s100605469324771722219672 Search in Google Scholar

25. Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10 (3), 2088–2106. DOI:10.3390/s10030208810.3390/s100302088326446922294916 Search in Google Scholar

26. Zhang, J., Liu, X., Neri, G., & Pinna, N. (2015). Nanostructured Materials for Room-Temperature Gas Sensors. Advanced Materials, 28 (5), 795–831. DOI:10.1002/adma.20150382510.1002/adma.20150382526662346 Search in Google Scholar

27. Zhu, L., & Zeng, W. (2017). A Novel Coral Rock-like ZnO and its Gas Sensing. Materials Letters, 209, 244–246. DOI:10.1016/j.matlet.2017.08.02010.1016/j.matlet.2017.08.020 Search in Google Scholar

28. Arregui, F. J. (ed.). (2009). Sensors based on nanostructured materials. New York: Springer. DOI:10.1007/978-0-387-77753-510.1007/978-0-387-77753-5 Search in Google Scholar

29. Fort, A., Panzardi, E., Vignoli, V., Hjiri, M., Aida, M., Mugnaini, M., & Addabbo, T. (2019). Co3O4/Al-ZnO Nano-Composites: Gas Sensing Properties. Sensors, 19 (4), 760. doi:10.3390/s1904076010.3390/s19040760641219230781799 Search in Google Scholar

30. Shankar, P., & Rayappan, J. (2015) Gas Sensing Mechanism of Metal Oxides: The Role of Ambient Atmosphere, Type of Semiconductor and Gases – A Review, Science Letters Journal, 4, 126, (18 p.). http://www.cognizure.com/scilett.aspx?p=200638572 Search in Google Scholar

31. Yang, S., Jiang, C., & Wei, S. (2017). Gas Sensing in 2D Materials. Applied Physics Reviews, 4 (2), 021304. DOI:10.1063/1.498331010.1063/1.4983310 Search in Google Scholar

32. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., … & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. DOI:10.3762/bjnano.9.22710.3762/bjnano.9.227614272730254837 Search in Google Scholar

33. Azeez, O. A., Sabry, R. S., Hassan, M. A. M., & Madlul, S. F. (2015). Synthesis and Characteristics of Screen Printed ZnO Thick Films Nanostructures Grown Using Different Methods. Journal of Materials Science: Materials in Electronics, 26 (6), 4051–4061. DOI:10.1007/s10854-015-2944-010.1007/s10854-015-2944-0 Search in Google Scholar

34. Ferraz, H. C., Machado, D. F., & de Resende, N. S. (2017). Nanostructured Screen-Printed Electrodes Based on Titanate Nanowires for Biosensing Applications. Materials Science and Engineering: C, 70, 15–20. DOI:10.1016/j.msec.2016.08.04610.1016/j.msec.2016.08.04627770875 Search in Google Scholar

35. Sarkar, K., Braden, E. V., Bonke, S. A., Bach, U., & Müller-Buschbaum, P. (2015). Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for their Application in Dye-Sensitized Solar Cells. ChemSusChem, 8 (16), 2696–2704. DOI:10.1002/cssc. 201500450 Search in Google Scholar

36. Carotta, M. C., Martinelli, G., Crema, L., Malagù, C., Merli, M., … &Traversa, E. (2001). Nanostructured Thick-Film Gas Sensors for Atmospheric Pollutant Monitoring: Quantitative Analysis on Field Tests. Sensors and Actuators B: Chemical, 76 (1–3), 336–342. DOI:10.1016/s0925-4005(01)00620-710.1016/S0925-4005(01)00620-7 Search in Google Scholar

37. Solis, J. ., Saukko, S., Kish, L., Granqvist, C., & Lantto, V. (2001). Semiconductor Gas Sensors Based on Nanostructured Tungsten Oxide. Thin Solid Films, 391 (2), 255–260. DOI:10.1016/s0040-6090(01)00991-910.1016/S0040-6090(01)00991-9 Search in Google Scholar

38. Zhou, Q., Chen, W., Xu, L., & Peng, S. (2013). Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and their Methane Sensing Properties. Sensors, 13 (5), 6171–6182. DOI:10.3390/s13050617110.3390/s130506171 Search in Google Scholar

39. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., … & Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. In the 8th International Conference on Advanced Optical Materials and Devices (AOMD-8), (9421–23), 25–27 August 2014, Riga, Latvia. Search in Google Scholar

40. Krasovska, M., Gerbreders, V., Paskevics, V., Ogurcovs, A., & Mihailova, I. (2015). Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method. Latvian Journal of Physics and Technical Sciences, 52 (5), 28–40. DOI:10.1515/lpts-2015-002610.1515/lpts-2015-0026 Search in Google Scholar

41. Mokoena, T. P., Swart, H. C., & Motaung, D. E. (2019). A Review on Recent Progress of p-Type Nickel Oxide Based Gas Sensors: Future Perspectives. Journal of Alloys and Compounds, 267–294. DOI:10.1016/j. jallcom.2019.06.329 Search in Google Scholar

42. Kim, H.-J., & Lee, J.-H. (2014). Highly Sensitive and Selective Gas Sensors Using p-Type Oxide Semiconductors: Overview. Sensors and Actuators B: Chemical, 192, 607–627. DOI:10.1016/j.snb.2013.11.00510.1016/j.snb.2013.11.005 Search in Google Scholar

43. Ji, H., Zeng, W., & Li, Y. (2019). Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale, 11, 22664–22684. DOI:10.1039/c9nr07699a10.1039/C9NR07699A Search in Google Scholar

44. Barsan, N., Simion, C., Heine, T., Pokhrel, S., & Weimar, U. (2010). Modelling of Sensing and Transduction for p-Type Semiconducting Metal Oxide Based Gas Sensors. Journal of Electroceramics, 25 (1), 11–19. DOI:10.1007/s10832-009-9583-x10.1007/s10832-009-9583-x Search in Google Scholar

45. Wurzinger, O., & Reinhardt, G. (2004). CO-sensing Properties of Doped SnO2 Sensors in H2-rich Gases. Sensors and Actuators B: Chemical, 103 (1–2), 104–110. DOI:10.1016/j.snb.2004.04.04110.1016/j.snb.2004.04.041 Search in Google Scholar

46. Ostrick, B., Fleischer, M., Meixner, H., & Kohl, C.-D. (2000). Investigation of the Reaction Mechanisms in Work Function Type Sensors at Room Temperature by Studies of the Cross-Sensitivity to Oxygen and Water: The Carbonate–Carbon Dioxide System. Sensors and Actuators B: Chemical, 68 (1–3), 197–202. DOI:10.1016/s0925-4005(00)00429-910.1016/S0925-4005(00)00429-9 Search in Google Scholar

47. Madou, M. J., & Morrison, S. R. (1989). Chemical sensing with solid state devices. San Diego: Academic Press. Search in Google Scholar

48. Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., … & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm, 22 (8), 1346–1358. DOI:10.1039/c9ce01556f10.1039/C9CE01556F Search in Google Scholar

eISSN:
2255-8896
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik