Uneingeschränkter Zugang

An analysis of flooding coverage using remote sensing within the context of risk assessment

   | 31. Dez. 2019

Zitieren

Butera, M.K., 1983. Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing 3, 383–392.10.1109/TGRS.1983.350471Search in Google Scholar

Chavez, P.S., Sides, S.C. & Anderson, J.A., 1991. Comparison of 3 different methods to merge multiresolution and multispectral data-Landsat tm and spot panchromatic. Photogrammetric Engineering and Remote Sensing 57, 295–303.Search in Google Scholar

Dong, Z.Y., Wang, Z.M., Liu, D.W. & Song, K.S., 2014. Mapping wetland areas using landsat-derived NDVI and LSWI: a case study of west songnen plain, Northeast China. Journal of the Indian Society of Remote Sensing 42, 569–576.10.1007/s12524-013-0357-1Search in Google Scholar

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F. & Bargellini, P., 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120, 25–36.10.1016/j.rse.2011.11.026Search in Google Scholar

Dvorett, D., Davis, C. & Papes, M., 2016. Mapping and hydrologic attribution of temporary wetlands using recurrent Landsat imagery. Wetlands 36, 431–443.10.1007/s13157-016-0752-9Search in Google Scholar

Gao, B.C., 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58, 257–266.10.1016/S0034-4257(96)00067-3Search in Google Scholar

Guyot, G., 1989. Signatures spectrales des surfaces naturelles. Télédétection satellitaire 5, Paradigme, Caen, 178 pp.Search in Google Scholar

Huang, C., Chen, Y. & Wu, J.P., 2014a. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping. International Journal of Remote Sensing 35, 365–381.10.1080/01431161.2013.871084Search in Google Scholar

Huang, C.Q., Peng, Y., Lang, M.G., Yeo, I.Y. & McCarty, G., 2014b. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment 141, 231–242.10.1016/j.rse.2013.10.020Search in Google Scholar

Huete, A., Liu, H., Batchily, K.V. & Van Leeuwen, W., 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 59, 440–451.10.1016/S0034-4257(96)00112-5Search in Google Scholar

Islam, M. & Sado, K., 2006. Analyses of ASTER and spectroradiometer data with in situ measurements for turbidity and transparency study of lake Abashri. International Journal of Geoinformatics 2, 31–45.Search in Google Scholar

Janica, R., Frankowski, Z., Jóźwiak, K., Kocyła, J., Majer, E., Sokołowska, M., Solovey, T., Woźnicka, M., Honczaruk, M., Kucharska, M. & Majer, K., 2017. Metodyka opracowania wstępnej oceny ryzyka powodziowego (WORP) w zakresie powodzi od wód podziemnych [Methodology for the development of preliminary flood risk assessment (WORP) for flooding from groundwater]. PIG–PIB, Warszawal, 56 pp.Search in Google Scholar

Jensen, J.R., 1996. Introductory digital image processing, a remote sensing perspective. Prentice Hall, 316 pp.Search in Google Scholar

Kayastha, N., Thomas, V., Galbraith, J. & Banskota, A., 2012. Monitoring wetland change using inter-annual Landsat time-series data. Wetlands 32, 1149–1162.10.1007/s13157-012-0345-1Search in Google Scholar

Kopeć, D., Michalska-Hejduk, D. & Krogulec, E., 2013. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecolog Engineering 57, 242–251.10.1016/j.ecoleng.2013.04.028Search in Google Scholar

Krogulec, E., 2004. Ocena podatności wód podziemnych na zanieczyszczenia w dolinie rzecznej na podstawie przesłanek hydrodynamicznych [Vulnerability assessment of groundwater pollution in the river valley on the basis of hydrodynamic evidence]. Uniwersytet Warszawski, Warszawa, 177 pp.Search in Google Scholar

Krogulec, E., 2011. Charakterystyka uwarunkowań hydroekologicznych [Characteristics of hydroecological conditions]. [In:] T. Okruszko, W. Mioduszewski & L. Kucharski (Eds): Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego [Protection and restoration of wetlands in the Kampinos National Park]. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa, 73–92.Search in Google Scholar

Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. & Lafaye, M., 2007. Classification of ponds from highspatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment 106, 66–74.10.1016/j.rse.2006.07.012Search in Google Scholar

Li, J.H. & Chen, W.J., 2005. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing 26, 5051–5069.10.1080/01431160500166516Search in Google Scholar

Li, W.B., Du, Z.Q., Ling, F., Zhou, D.B., Wang, H.L., Gui, Y.M., Sun, B.Y. & Zhang, X.M., 2013. A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI. Remote Sensing 5, 5530–5549.10.3390/rs5115530Search in Google Scholar

Li, W., Qin, Y., Sun, Y., Huang, H., Ling, F., Tian, L. & Ding, Y., 2016. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sensing Letters 7, 121–130.10.1080/2150704X.2015.1117151Search in Google Scholar

Lin, K.C., 2005. On improvement of the computation speed of Otsu’s image thresholding. Journal of Electronic Imaging 14, 023011.10.1117/1.1902997Search in Google Scholar

Martinez, J. & Le Toan, T., 2007. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon Floodplain using multitemporal SAR data. Remote Sensing of Environment 108, 209−223.10.1016/j.rse.2006.11.012Search in Google Scholar

McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425–1432.10.1080/01431169608948714Search in Google Scholar

Melack, J.M. & Hess, L.L., 2010. Remote sensing of the distribution and extent of wetlands in the Amazon basin Amazonian floodplain forests. Springer, pp. 43–59.10.1007/978-90-481-8725-6_3Search in Google Scholar

Michalska-Hejduk, D., 2001. Stan obecny i kierunki zmian roślinności nieleśnej Kampinoskiego Parku Narodowego [Current state and directions of change of non-forest vegetation of the Kampinos National Park]. Monographia Botanica 89, 1–134.10.5586/mb.2001.001Search in Google Scholar

Monserud, R.A. & Leemans, R., 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling 62, 275–293.10.1016/0304-3800(92)90003-WSearch in Google Scholar

Morandeira, N.S., Grings, F., Facchinetti, C. & Kandus, P., 2016. Mapping plant functional types in floodplain wetlands: an analysis of C-Band polarimetric SAR data from RADARSAT-2. Remote Sensing 8, 174.10.3390/rs8030174Search in Google Scholar

Moser, L., Schmitt, A., Wendleder, A. & Roth, A., 2016. Monitoring of the lac Bam wetland extent using dual-polarized X-band SAR data. Remote Sensing 8, 302.10.3390/rs8040302Search in Google Scholar

Mwita, E., Menz, G., Misana, S., Becker, M., Kisanga, D. & Boehme, B., 2013. Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. International Journal of Applied Earth Observation and Geoinformation 21, 173–183.10.1016/j.jag.2012.08.010Search in Google Scholar

Nandi, I., Srivastava, P.K. & Shah, K., 2017. Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: case study from Varanasi. Water Resources Management 31, 1157–1171.10.1007/s11269-017-1568-ySearch in Google Scholar

Napiórkowska, M., 2014. Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: a case study of Biebrza Wetlands in Northeast Poland. Remote Sensing 6, 1605–1633.10.3390/rs6021605Search in Google Scholar

Olszewski, A., Wierzbicki, A., Degórska, A., Ferchmin, M., Gudowicz, J., Lenartowicz, M. & Otręba, N., 2018. Raport stacji bazowej zintegrowanego monitoringu środowiska przyrodniczego „Pożary” za rok 2017 [Report of the base station of the Integrated Monitoring of Natural Environment „Pożary” for 2017]. Kampinoski Park Narodowy, Izabelin.Search in Google Scholar

Ramsey, E.W. & Laine, S.C., 1997. Comparison of Landsat thematic mapper and high resolution photography to identify change in complex coastal wetlands. Journal of Coastal Research 13, 281–292.Search in Google Scholar

Seiler, R., Schmidt, J., Diallo, O. & Csaplovics, E., 2009. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data. Journal of Environmental Management 90, 2121–2129.10.1016/j.jenvman.2007.07.03518554774Search in Google Scholar

Sun, F.D., Sun, W.X., Chen, J. & Gong, P., 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing 33, 6854–6875.10.1080/01431161.2012.692829Search in Google Scholar

White, L., Brisco, B., Dabor, M., Schmitt, A. & Pratt, A., 2015. A collection of SAR methodologies for monitoring wetlands. Remote Sensing 7, 7615–7645.10.3390/rs70607615Search in Google Scholar

Xu, H.Q., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27, 3025–3033.10.1080/01431160600589179Search in Google Scholar

Zomer, R.J., Trabucco, A. & Ustin, S., 2009. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management 90, 2170–2177.10.1016/j.jenvman.2007.06.02818395960Search in Google Scholar

eISSN:
2080-6574
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
3 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geophysik, Geologie und Mineralogie, andere