1. bookVolumen 13 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2336-3037
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Algorithm for Creating Optimized Green Corridor for Emergency Vehicles with Minimum Possible Disturbance in Traffic

Online veröffentlicht: 10 Jun 2022
Volumen & Heft: Volumen 13 (2022) - Heft 1 (January 2022)
Seitenbereich: 84 - 95
Eingereicht: 08 Jan 2022
Akzeptiert: 17 Mar 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2336-3037
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

Green corridor is a dynamic real-time lane created in order to increase the speed at which an emergency vehicle can travel in traffic. Its purpose is to reduce the travel time of emergency vehicles. The paper submitted examines ways to optimize the travel time for emergency vehicles and for other drivers on the roads. The paper takes into account the fact that all vehicles accelerate and decelerate at different speeds and the fact that there might be several traffic guided lights and non-guided lights on the roads. There are other factors considered, such as the speed and safety, in order to create a sustainable solution that can be implemented at scale. SUMO simulation libraries are used to create an environment as close to reality as possible. The trade-off between the number of variables selected and the approximation of a real situation has been carefully selected so that the solution is also feasible in real-life situations.

[1] Yadav, S. & Rishi, R. (2021). Secure and Authenticate Communication by using SoftSIM for Intelligent Transportation System in Smart Cities. Journal of Physics: Conference Series 1767, 2021, 012049. DOI: 10.1088/1742-6596/1767/1/012049.10.1088/1742-6596/1767/1/012049 Search in Google Scholar

[2] Yadav, S. & Rishi, R. (2021). A systematic and critical analysis of the developments in the field of intelligent transportation system. Advances in Dynamical Systems and Applications 16(2), 901-912. Retrieved November 15, 2021, from the World Wide Web: https://www.ripublication.com/adsa21/v16n2p39.pdf10.37622/ADSA/16.2.2021.901-912 Search in Google Scholar

[3] Karmakar, G., Chowdhury, A., Kamruzzaman, J. & Gondal, I. (2020). A Smart Priority Based Traffic Control System for Emergency Vehicles. IEEE Sensors Journal. DOI: 10.1109/JSEN.2020.3023149.10.1109/JSEN.2020.3023149 Search in Google Scholar

[4] Wu, W., Huang, L. & Du. R. (2020). Simultaneous Optimization of Vehicle Arrival Time and Signal Timings within a Connected Vehicle Environment. Sensors 191(20). DOI: 10.3390/s20010191.10.3390/s20010191 Search in Google Scholar

[5] Firooze, S., Ra, M. & Zenouzzadeh, S.M. (2018). An optimization model for emergency vehicle location and relocation with consideration of unavailability time. Scientia Iranica E 25(6), 3685-3699. DOI: 10.24200/sci.2017.20022.10.24200/sci.2017.20022 Search in Google Scholar

[6] Ližbetin, J., Kampf, R., Jeřábek, K. & Caha. Z. (2016). Practical Application of the Comparative Analysis of Direct Road Freight Transport and Combined Transport. Transport Means – Proceedings of the International Conference. (pp. 1083 – 1087). DOI: 10.1186/s12544-018-0319-3.10.1186/s12544-018-0319-3 Search in Google Scholar

[7] E. Nelson & D. Bullock. (2000). Impact of Emergency Vehicle Preemption on Signalized Corridor Operation. Transportation Research Record: Journal of the Transportation Research Board, SAGE Journals 1727(1), 1-11. DOI: 10.3141/1727-01.10.3141/1727-01 Search in Google Scholar

[8] Anderson, P. & Daganzo, C. (2018). Effect of Transit Signal Priority on Bus Service Reliability. arXiv.org- math - arXiv:1806.09254, 2018. Retrieved November 1, 2021, from the World Wide Web: https://arxiv.org/abs/1806.09254 Search in Google Scholar

[9] Christofa, E. & Skabardonis, A. (2011). Traffic Signal Optimization with Application of Transit Signal Priority. Transportation Research Record: Journal of the Transportation Research Board, SAGE Journals 2259(1), 192-201. DOI: 10.3141/2259-18.10.3141/2259-18 Search in Google Scholar

[10] Singh, M. & Tamura. H. (1974). Modelling and hierarchical optimization for oversaturated urban road traffic networks. International Journal of Control, T&F online 20(6), 913-934. DOI: 10.1080/00207177408932791.10.1080/00207177408932791 Search in Google Scholar

[11] Nguyen, J., Farrenkopf, T., Guckert, M., Powers, S. & Urquhart, N. (2021). An Overview of Agent-Based Traffic Simulators. Retrieved November 29, 2021, from the World Wide Web: https://arxiv.org/pdf/2102.07505.pdf10.1016/j.trip.2021.100486 Search in Google Scholar

[12] Song, J., Wu, Y., Xu, Z. & Lin., X. (2014). Research on car-following model based on SUMO. In Proc. of the 7th IEEE/International Conference on Advanced Infocomm Technology, Fuzhou, China, 2014. DOI: 10.1109/ICAIT.2014.7019528.10.1109/ICAIT.2014.7019528 Search in Google Scholar

[13] Krajzewicz, D. & Erdmann, J. (2013). SUMO’s Road Intersection Model. In Institute of Transport Research: Publications, First International Conference, SUMO, Berlin, Germany, 2013. Retrieved October 12, 2021, from the World Wide Web: https://core.ac.uk/download/pdf/31007126 Search in Google Scholar

[14] Alemzadeh, S., Moslemi, R., Sharma, R. & Mesbahi, M. (2020). Adaptive Traffic Control with Deep Reinforcement Learning: Towards State-of-the-art and Beyond. arXiv - CS - Machine Learning (IF), 2020. Retrieved October 9, 2021, from the World Wide Web: https://arxiv.org/abs/2007.10960 Search in Google Scholar

[15] Bartuška, L., Čejka J & Caha Z. (2015). The Application of Mathematical Methods to the Determination of Transport Flows. Nase More. Dubrovnik: University of Dubrovnik, Special Issue 62, 91-96. DOI:10.17818/NM/2015/SI1.10.17818/NM/2015/SI1 Search in Google Scholar

[16] Bartuška, L., Jeřábek K. & Chenguang, Li. (2017). Determination of Traffic Patterns on urban roads. Communications. Žilina: University of Žilina, EDIS 19(2), 103-108. DOI: 10.26552/com.C.2017.2.103-108.10.26552/com.C.2017.2.103-108 Search in Google Scholar

[17] Gomez, J., Romo, J., Cabrera, R., Cruz, A. & Molina. J. (2021). Traffic system Control System Based on Inteligent Transportation System and Reinforcement Learning. Electronics, MDPI 10(19), 2363. DOI: 10.3390/electronics10192363.10.3390/electronics10192363 Search in Google Scholar

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv.org - cs - arXiv:1312.5602, 2013. Retrieved October 2, 2021, from the World Wide Web: https://arxiv.org/abs/1312.5602 Search in Google Scholar

[19] Palmer, P. & O’Connell, D. (2009). Regression Analysis for Prediction: Understanding the Process. Cardiopulmonary Physics Therapy Journal 20(3), 23–26. Retrieved November 1, 2021, from the World Wide Web: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845248/ Search in Google Scholar

[20] Huang, B., Zhou, M. & Zhang, G. (2015). Synthesis of Petri net supervisors for FMS via redundant constraint elimination Automatica, Elsevier 61, 156-163. DOI: 10.1016/j.automatica.2015.08.011.10.1016/j.automatica.2015.08.011 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo