1. bookVolumen 13 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2336-3037
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Automatic Detection of Track Length Defects

Online veröffentlicht: 12 May 2022
Volumen & Heft: Volumen 13 (2022) - Heft 1 (January 2022)
Seitenbereich: 13 - 24
Eingereicht: 18 Oct 2021
Akzeptiert: 14 Feb 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2336-3037
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

Ensuring the safety of railway transport operation requires constant monitoring of the technical condition of individual elements of railway infrastructure. The necessary activities that contribute to maintaining good operational condition of the railway transport line also include the diagnostics of track length. Diagnostics of railway tracks is most often performed by means of regular visual inspection (in the conditions of the infrastructure manager – ŽSR). The objective of the article is to provide information on the application of a new approach to diagnostics of the technical condition of railway infrastructure. The new approach to defect identification on railway infrastructure uses non-invasive diagnostic methods based on the latest knowledge in the field of information and communication technologies. These facts resulted in investigating the possibilities of automatic detection of the technical condition of the track length using neural networks. The article is part of the following scientific research task: ‘Research into new knowledge and observational experience of a new generation of diagnostic systems in industrial production and transport industry – research into the physical nature of an automated track length video inspection system’, supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic.

[1] Luptak, V., Gašparík, J. & Chovancová, M. (2017). Proposal for evaluating a connection quality within transport networks. In MATEC Web of Conferences: 18th International Scientific Conference on LOGI, 19 October 2017 (art no. 00033), České Budějovice, Czech Republic. DOI:10.1051/matecconf/201713400033.10.1051/matecconf/201713400033 Search in Google Scholar

[2] Ližbetin, J., Vejs, P., Stopka, O. & Cempírek, V. (2016). The significance of dynamic detection of the railway vehicles weight. Nase More, 63(3), 156-160. DOI:10.17818/NM/2016/SI15.10.17818/NM/2016/SI15 Search in Google Scholar

[3] Ižvolt, L., Hodas, S. & Šestáková, J. (2015). Railway construction 1: design, construction and reconstruction of railway lines and stations (1st ed.). Zilina, Slovakia: University of Zilina. Search in Google Scholar

[4] Hlatká, M., Kampf, R., Korec, K., Kalinová, E. & Gross, P. (2021). Failure analysis and identification of causes of SRC system malfunctions – case study. Engineering Failure Analysis, 127. DOI: 10.1016/j.engfailanal.2021.105574.10.1016/j.engfailanal.2021.105574 Search in Google Scholar

[5] Fedorko, G., Molnár, V., Blaho, P., Gašparík, J. & Zitrický, V. (2020). Failure analysis of cyclic damage to a railway rail – A case study. Engineering Failure Analysis, 116. DOI: 10.1016/j.engfailanal.2020.104732.10.1016/j.engfailanal.2020.104732 Search in Google Scholar

[6] Šestaková, J., Ižvolt, L. & Mečár, M. (2019). Degradation-prediction models of the railway track quality. Civil and Environmental Engineering 15(2), 115-124. DOI:10.2478/cee-2019-0015.10.2478/cee-2019-0015 Search in Google Scholar

[7] Stopka, O., Stopková, M., Ľupták, V. & Krile, S. (2020). Application of the chosen multi-criteria decision-making methods to identify the autonomous train system supplier. Transport Problems 15(2), 45-57. DOI:10.21307/TP-2020-019.10.21307/tp-2020-019 Search in Google Scholar

[8] Kulka, J., Mantic, M., Fedorko, G. & Molnar, V. (2020). Failure analysis concerning causes of wear for bridge crane rails and wheels. Engineering Failure Analysis 110, art. num. 104441. DOI: 10.1016/j.engfailanal.2020.104441.10.1016/j.engfailanal.2020.104441 Search in Google Scholar

[9] Široký, J., Nachtigall, P., Gašparík, J. & Čáp, J. (2021). Calculation model of railway capacity price in the Czech Republic. Promet - Traffic - Traffico 33(1), 91-102. DOI:10.7307/ptt.v33i1.3544.10.7307/ptt.v33i1.3544 Search in Google Scholar

[10] Xie, J., Huang, J., Zeng, C., Jiang, S. & Podlich, N. (2020). Systematic literature review on data-driven models for predictive maintenance of railway track: Implications in geotechnical engineering. Geosciences (Switzerland) 10(11), 1-24. DOI:10.3390/geosciences10110425.10.3390/geosciences10110425 Search in Google Scholar

[11] Lyngby, N. (2009). Railway track degradation: Shape and influencing factors. International Journal of Performability Engineering 5(2), 177-186. Search in Google Scholar

[12] Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R. & Li, Z. (2018). A decision support approach for condition-based maintenance of rails based on big data analysis. Transportation Research Part C: Emerging Technologies 95, 185-206. DOI: 10.1016/j.trc.2018.07.007.10.1016/j.trc.2018.07.007 Search in Google Scholar

[13] Sheeran, R. & Kay, M. (2015). A Short Guide to Network Rail. London, UK: National Audit Office. Search in Google Scholar

[14] Połom, M., Tarkowski, M., Puzdrakiewicz, K. & Abramović, B. (2018). Urban transformation in the context of rail transport development: The case of a newly built railway line in Gdańsk (Poland). Journal of Advanced Transportation. DOI: 10.1155/2018/1218041.10.1155/2018/1218041 Search in Google Scholar

[15] Gašparík, J., Abramović, B. & Halás, M. (2015). New graphical approach to railway infrastructure capacity analysis. Promet - Traffic - Traffico 27(4), 283-290. DOI: 10.7307/ptt.v27i4.1701.10.7307/ptt.v27i4.1701 Search in Google Scholar

[16] Šperka, A., Vojtek, M., Široký, J. & Čamaj, J. (2020). Improvement of the last mile-specific issues in railway freight transport. Sustainability (Switzerland) 12(23), 1-18. DOI: 10.3390/su122310154.10.3390/su122310154 Search in Google Scholar

[17] Szendro, G., Csete, M. & Torok, A. (2012). Unbridgeable gap between transport policy and practice in Hungary. Journal of Environmental Engineering and Landscape Management 20(2), 104-109. DOI: 10.3846/16486897.2012.660881.10.3846/16486897.2012.660881 Search in Google Scholar

[18] Lakatos, A. & Mándoki, P. (2020). Analytical, logit model-based examination of the Hungarian regional parallel public transport system. Promet - Traffic - Traffico 32(3), 361-369. DOI: 10.7307/ptt.v32i3.3307.10.7307/ptt.v32i3.3307 Search in Google Scholar

[19] Kanis, J., Zitrický, V., Hebelka, V., Lukáč, P. & Kubín, M. (2021). Innovative diagnostics of the railway track superstructure. Transportation Research Procedia 53, 138-145. DOI: 10.1016/j.trpro.2021.02.017.10.1016/j.trpro.2021.02.017 Search in Google Scholar

[20] Kanis, J., Zitrický, V. & Hebelka, V. (2021). Innovative diagnostics of the track superstructure. Svet dopravy 4(1), 34-44. Search in Google Scholar

[21] Kanis, J. (2020). Detailed summary report of the company’s basic research SMARTRONIC, s.r.o. for the evaluation period 01. 01. 2019 – 31. 12. 2019. Bratislava, 2020. Search in Google Scholar

[22] Ľupták, V., Bartuška, L. & Hanzl, J. (2018). Assessment of connection quality on transport networks applying the empirical models in traffic planning: A case study. In Transport Means - Proceedings of the International Conference, October 2018 (pp. 236-240), Trakai, Lithuania. Search in Google Scholar

[23] Hřebíček, Z., Lupták, V. & Stopková, M. (2018). Determining lateral resistance of sleeper in railway ballast. In MATEC Web of Conferences: 10th International Scientific Conference Horizons of Railway Transport, 11 October 2018 (art. no. 235). Strečno, Slovak republic, DOI: 10.1051/matecconf/201823500007.10.1051/matecconf/201823500007 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo