Zitieren

[1] Kilikevicius, A., Fursenko, A., Jurevicius, M., Kilikeviciene, K. & Bureika, G. (2019). Analysis of parameters of railway bridge vibration caused by moving rail vehicles. Measurement and Control (United Kingdom). DOI: 10.1177/0020294019836123, ISSN 0020-2940.10.1177/00202940198361230020-2940Open DOISearch in Google Scholar

[2] Gorbunov, M., Gerlici, J., Kara, S., Nozhenko, O., Chernyak, G., Kravchenko, K. & Lack, T. (2018). New principle schemes of freight cars bogies. Manufacturing Technology 18(2), 233-238. DOI: 10.21062/ujep/83.2018/a/1213-2489/MT/18/2/233.10.21062/ujep/83.2018/a/1213-2489/MT/18/2/233Search in Google Scholar

[3] Hauser, V., Gerlici, J., Nozhenko, O., Kravchenko, K. & Loulová, M. (2018). Efficiency justification of the special tread wheelset passage along specific track section. International Journal of Engineering and Technology (UAE) 7(4.3., 3), 371-376. DOI: 10.14419/ijet.v7i1.1.9855.10.14419/ijet.v7i1.1.9855Search in Google Scholar

[4] Graa, M., Nejlaoui, M., Houidi, A., Affi, Z. & Romdhane, L. (2018). Modeling and control of rail vehicle suspensions: A comparative study based on the passenger comfort. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232(2), 260-274. DOI: 10.1177/0954406216682542.10.1177/0954406216682542Open DOISearch in Google Scholar

[5] Lack, T. & Gerlici, J. (2018). Y25 freight car bogie models properties analysis by means of computer simulations. MATEC Web of Conferences 157. DOI: 10.1051/matecconf/201815703014.10.1051/matecconf/201815703014Open DOISearch in Google Scholar

[6] Hauser, V., Nozhenko, O., Kravchenko, K. O., Loulová, M., Gerlici, J. & Lack, T. (2018). Car body and bogie connection modification for track curves passability improvement. MATEC Web of Conferences 157. DOI: 10.1051/matecconf/201815703009.10.1051/matecconf/201815703009Open DOISearch in Google Scholar

[7] Lupták, V., Stopka, O. & Jeřábek, K. Draft deployment of traction units with active tilting system for regional and long-distance transport on non-modernized railway tracks. MATEC Web of Conferences 134. DOI: 10.1051/matecconf/201713400034.10.1051/matecconf/201713400034Open DOISearch in Google Scholar

[8] Múčka, P. Influence of profile specification on international roughness index. Journal of Infrastructure Systems. 25(2). DOI: 10.1061/(ASCE)IS.1943-555X.0000478.10.1061/(ASCE)IS.1943-555X.0000478Search in Google Scholar

[9] Mizrak, C. & Esen, I. (2017). The optimisation of rail vehicle bogie parameters with the fuzzy logic method in order to improve passenger comfort during passage over bridges. International Journal of Heavy Vehicle Systems 24(2), 113-139. DOI: 10.1504/IJHVS.2017.083057.10.1504/IJHVS.2017.083057Open DOISearch in Google Scholar

[10] Bogdevicius, M., Zygiene, R., Bureika, G. & Dailydka, S. (2016). An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel-flat. Vehicle System Dynamics 54(5), 689-705. DOI: 10.1080/00423114.2016.1153114.10.1080/00423114.2016.1153114Search in Google Scholar

[11] Dižo, J., Blatnický, M. & Melnik, R. (2017). Assessment of the passenger ride comfort for a coach by means of simulation computations. LOGI – Scientific Journal on Transport and Logistics 8(2), 24-32. DOI: 10.1515/logi-2017-0013.10.1515/logi-2017-0013Open DOISearch in Google Scholar

[12] Lack, T. & Gerlici, J. (2005). Contact area and normal stress determination on railway wheel/rail contact. Komunikacie 7(2), 38-45.10.26552/com.C.2005.2.38-45Search in Google Scholar

[13] Lack, T. & Gerlici. J. (2009). Railway wheel and rail roughness analysis. Komunikacie 11(2), 41-48.10.26552/com.C.2009.2.41-48Search in Google Scholar

[14] Smetanka, L. & Šťastniak, P. (2017). Analysis of contact stresses of theoretical and worn profile by using computer simulation. Manufacturing Technology 17(4), 580-585.10.21062/ujep/x.2017/a/1213-2489/MT/17/4/580Search in Google Scholar

[15] Smetanka, L., Šťastniak, P. Harušinec, J. (2018). Wear research of railway wheelset profile by using computer simulation. MATEC Web of Conferences 157. DOI: 10.1051/matecconf/201815703017.10.1051/matecconf/201815703017Open DOISearch in Google Scholar

[16] Loulová, M., Suchánek, A., Harušinec, J. & Strážovec, P. (2018). Analysis of a railway vehicle with unevenness on wheel. Manufacturing Technology 18(2), 266-272. DOI: 10.21062/ujep/89.2018/a/1213-2489/MT/18/2/266.10.21062/ujep/89.2018/a/1213-2489/MT/18/2/266Search in Google Scholar

[17] UIC CODE 518. (2009). Testing and approval of railway vehicles from the point of view their dynamic behavior – Safety – Track fatigue – Running behavior. September 2009. Paris, France.Search in Google Scholar

[18] Oliveira, L.C., Fox, C., Birrell, S. & Cain, R. (2019). Analysing passenger’s behaviours when boarding trains to improve rail infrastructure and technology. Robotics and Computer-Integrated Manufacturing 57, 282-291. DOI: 10.1016/j.rcim.2018.12.008.10.1016/j.rcim.2018.12.008Open DOISearch in Google Scholar

[19] Lewis, T., D., Jiang, J. Z., Neild, S.A., Gong, C. & Iwnicki, S.D. (2019). Using an inerter-based suspension to improve both passenger comfort and track wear in railway vehicles. Vehicle System Dynamics. DOI: 10.1080/00423114.2019.1589535.10.1080/00423114.2019.1589535Open DOISearch in Google Scholar

[20] Pradhan, S. & Samantaray, A.K. (2018). Integrated modeling and simulation of vehicle and human multi-body dynamics for comfort assessment in railway vehicles. Journal of Mechanical Science and Technology 32(1), 109-119. DOI: 10.1007/s12206-017-1212-z.10.1007/s12206-017-1212-zOpen DOISearch in Google Scholar

[21] EN 12299:2009 Railway Applications – Ride Comfort for Passengers – Measurement and Evaluation. (2009). European Committee for Standardization, Brussels.Search in Google Scholar

eISSN:
2336-3037
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Wirtschaftswissenschaften, Betriebswirtschaft, Branchen, Transport, Logistik, Luftfahrt, Schifffahrt