1. bookVolumen 66 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Impact of the diffusion coefficient calculation on predicting Fe2B boride layer thickness

Online veröffentlicht: 18 Apr 2022
Volumen & Heft: Volumen 66 (2022) - Heft 1 (January 2022)
Seitenbereich: 25 - 35
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

In this study, a single-phase boride layer thickness Fe2B is predicted on two different substrates (Armco iron and XC38 steel) by following the integral method. This method is a mathematical model based on a system of differential algebraic equations that help to deduce the diffusion coefficient, which is the key factor on predicting the layer thickness. Literatures cover different diffusion coefficients for each substrate, albeit researchers usually extract from experimental data, variations of growth rate constants within only one time treatment and deduce the diffusion coefficient from them. This deduction is done via an estimation of a frequency factor and an activation energy from the growth rate constants. Therefore, our main aim is to illustrate the impact of the deduction of the diffusion coefficient on predicting the boride layer thickness. Lastly, the impact with and without incubation time on the boriding kinetics of both substrates was also examined.

1. Tsipas D.N., Rus J., Boronizing of alloy steels, Journal of Material Science Letter 1987, 6, 118-120.10.1007/BF01729451 Search in Google Scholar

2. Stewart K., Boronizing protects metals against wear, Advanced Materials & Processes 1997, 151(3), 23-25. Search in Google Scholar

3. Kulka M., Current Trends in Boriding Techniques, Springer 2019, 1-8.10.1007/978-3-030-06782-3 Search in Google Scholar

4. Davies J.A., Wilbur P.J., Williamson D.I., Wei R., Vajo J.J., Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source, Surface and Coatings Technology 1998, 103-104, 52-57.10.1016/S0257-8972(98)00374-0 Search in Google Scholar

5. Keddam M.S., Chentouf M., A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Applied Surface Science 2005, 252, 393-399.10.1016/j.apsusc.2005.01.016 Search in Google Scholar

6. Sen S., Sen U., Bindal C., An approach to kinetic study of borided steels, Surface and Coatings Technology 2005, 191(2), 274-285.10.1016/j.surfcoat.2004.03.040 Search in Google Scholar

7. Von Matuschka A.G., Borieren, Carl Hanser Verlag Mün-chen, Wien 1977. Search in Google Scholar

8. Milinovi A., Krumes D., Marković R., An investigation of boride layers growth kinetics on carbon steels, Tehnicki vjesnik 2012, 19(1), 27-31. Search in Google Scholar

8. Genel K., Boriding kinetics of H13 steel, Vacuum 2006, 80(5), 451-457.10.1016/j.vacuum.2005.07.013 Search in Google Scholar

10. Yu L.G.; Chen X.J.; Khor K.A., Sundararajan G., FeB/ Fe2B phase transformation during SPS pack-boriding: Bo-ride layer growth kinetics, Acta Materialia 2005, 53(8), 2361-2368.10.1016/j.actamat.2005.01.043 Search in Google Scholar

11. Campos-Silva I.E., Rodríguez-Castro G.A., Boriding to improve the mechanical properties and corrosion resistance of steels, in: E.J. Mittemeijer and M.A.J. Somers (eds.), Thermochemical Surface Engineering of Steels, Woodhead-Elsevier Publishing, Cambridge 2015, 651-697.10.1533/9780857096524.5.651 Search in Google Scholar

12. Zuno-Silva J., Ortiz-Domínguez M., Keddam M., Elias-Espinosa M., Damián-Mejía O., Cardoso-Legorreta E., Abreu-Quijano M., Boriding Kinetics of Fe2B Layers Formed on AISI 1045 Steel, Journal of Mining and Metallurgy, Section B: Metallurgy 2014, 50(2), 101-107.10.2298/JMMB140323019Z Search in Google Scholar

13. Keddam M., Elias-Espinosa M., Ortiz-Domínguez M., Simón-Marmolejo I., Zuno-Silva J., Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour, International Journal of Surface Science and Engineering 2017, 11(6), 563-585.10.1504/IJSURFSE.2017.088997 Search in Google Scholar

14. VillaVelázquez-Mendoza C.I., Rodríguez-Mendoza J.L., Ibarra-Galván V., Hodgkins R.P., López-Valdivieso A., Serrato-Palacios L.L., Leal-Cruz A.L., Ibarra-Junquera V., Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches, International Journal of Surface Science and Engineering 2014, 8(1) 71-91.10.1504/IJSURFSE.2014.059315 Search in Google Scholar

15. Campos I., Islas M., González E., Ponce P., Ramírez G., Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing, Surface and Coatings Technology 2006, 201, 2717-2723.10.1016/j.surfcoat.2006.05.016 Search in Google Scholar

16. Keddam M., A diffusion model for the Fe2B layers formed on a ductile cast iron, Acta Physica Polonica A 2018, 133, 1174-1177.10.12693/APhysPolA.133.1174 Search in Google Scholar

17. Keddam M., Chegroune R., A Model for Studying the Kinetics of the Formation of Fe2B Boride Layers at the Surface of a Gray Cast Iron, Applied Surface Science 2010, 256, 5025-5030.10.1016/j.apsusc.2010.03.048 Search in Google Scholar

18. Ramdan R.D., Takaki T., Tomita Y., Free energy Problem for the Simulations of the Growth of Fe2B Phase Using Phase-Field Method, Material Transaction 2008, 49, 2625-2631.10.2320/matertrans.MRA2008158 Search in Google Scholar

19. Nait Abdellah Z., Keddam M., Chegroune R., Bouarour B., Haddour L., Elias A., Simulation of the boriding kinetics of Fe2B layers on iron substrate by two approaches, Matériaux et Techniques 2012, 100, 581-588.10.1051/mattech/2012047 Search in Google Scholar

20. Elias-Espinosa M., Ortiz-Domínguez M., Keddam M., Flores-Rentería M.A., Damián-Mejía O., Zuno-Silva J., Hernández-Ávila J., Cardoso-Legorreta E., Arenas-Flores A., Growth kinetics of the Fe2B layers and adhesion on Armco iron substrate, Journal of Materials Engineering and Performance 2014, 23, 2943-2952.10.1007/s11665-014-1052-2 Search in Google Scholar

21. Keddam M., Kulka M., Mean diffusion coefficient method in studying Armco iron boriding kinetics, Metal Science and Heat Treatmen 2020, 62, 5-6.10.1007/s11041-020-00562-9 Search in Google Scholar

22. Keddam M., Kulka M., Analysis of the growth kinetics of Fe2B layers by the integral method, Journal of Mining and Metallurgy, Section B: Metallurgy 2018, 54(3), 361-367.10.2298/JMMB180405026K Search in Google Scholar

23. Mebarek B., Benguelloula A., Zanoun A., Effect of Boride Incubation Time During the Formation of Fe2B Phase, Materials Research 2018, 21(1), 1-7.10.1590/1980-5373-mr-2017-0647 Search in Google Scholar

24. Campos-Silva I., Ortiz-Domínguez M., Cimenoglu H., Escobar-Galindo R., Keddam M., Elías-Espinosa M., López-Perrusquia N., Diffusion Model for Growth of Fe2B Layer in Pure Iron, Surface Engineering 2011, 27, 189-195.10.1179/026708410X12550773057820 Search in Google Scholar

25. Krukovich M.G., Prusakov B.A., Sizov I.G., The Components and Phases of Systems ‘Boron-Iron’ and ‘Boron-Carbon-Iron’, Chapter Plasticity of Boronized Layers, Springer series, Materials Science 2016, 237, 13-21.10.1007/978-3-319-40012-9_3 Search in Google Scholar

26. Okamoto H., B-Fe (boron-Iron), Journal of Phase Equilibria and Diffusion 25 (2004) 297–298.10.1007/s11669-004-0128-3 Search in Google Scholar

27. T.R. Goodman, Application of Integral Methods to Transient Nonlinear Heat Transfer, Advances in Heat Transfer 1964, 1, 51-122.10.1016/S0065-2717(08)70097-2 Search in Google Scholar

28. Keddam M., Ortiz-Dominguez M., Elias-Espinosa M., Arenas-Flores A., Zuno-Silva J., Zamarripa-Zepeda D., Gomez-Vargas O.A., Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel, Metallurgical and Material Transaction A 2018, 49, 1895-1907.10.1007/s11661-018-4535-1 Search in Google Scholar

29. Zuno-Silva J., Keddam M., Ortiz-Domínguez M., Elias-Espinosac M.C., Cervantes-Sodi F., Oseguera-Peña J., De-Dios L.D.F., Gomez-Vargas O.A., Kinetics of formation of Fe2B layers on AISI S1 steel, Materials Research 2018, 21(5), 1-10.10.1590/1980-5373-mr-2018-0173 Search in Google Scholar

30. Ascher U., Petzold L., Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations, SIAM, Philadelphia 1998.10.1137/1.9781611971392 Search in Google Scholar

31. Keddam M., Kulka M., Makuch N., Pertek A., Małdziński L., A Kinetic Model for Estimating the Boron Activation Energies in the FeB and Fe2B Layers During the Gas-Bo-riding of Armco Iron: Effect of Boride Incubation Times, Applied Surface Science 2014, 298, 155-163.10.1016/j.apsusc.2014.01.151 Search in Google Scholar

32. Campos I., Oseguera J., Figueroa U., García J.A., Bautista O., Kelemenis G., Kinetic study of boron diffusion in the paste-boriding process, Materials Science and Engineering A 2003, 352, 261-265.10.1016/S0921-5093(02)00910-3 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo