Uneingeschränkter Zugang

Corrosion behaviour of the NiTiX (X = Si, Mg, Al) alloy prepared by self-propagating high-temperature synthesis


Zitieren

1. Kocich, R.; Szurman, I.; Kursa, M.: The methods of preparation of Ti–Ni–X alloys and their forming. Shape Memory Alloys-Processing, Characterization and Applications 2013, 28-35.10.5772/50067 Search in Google Scholar

2. Li, B.-Y.; Rong, L.-J.; Gjunter, V.; Li, Y.-Y.: Porous Ni-Ti shape memory alloys produced by two different methods. Zeitschrift Fur Metallkunde 2000, 91 (4), 291-295. Search in Google Scholar

3. Shiva, S.; Palani, I.; Mishra, S.; Paul, C.; Kukreja, L.: Investigations on the influence of composition in the development of Ni–Ti shape memory alloy using laser based additive manufacturing. Optics & Laser Technology 2015, 69, 44-51. Search in Google Scholar

4. Zhang, J.; Sato, M.; Ishida, A.: On the Ti2Ni precipitates and Guinier–Preston zones in Ti-rich Ti–Ni thin films. Acta materialia 2003, 51 (11), 3121-3130.10.1016/S1359-6454(03)00124-1 Search in Google Scholar

5. Lagoudas, D. C.; Vandygriff, E. L.: Processing and characterization of NiTi porous SMA by elevated pressure sintering. Journal of intelligent material systems and structures 2002, 13 (12), 837-850.10.1177/1045389X02013012009 Search in Google Scholar

6. Školáková, A.; Novák, P.; Salvetr, P.; Moravec, H.; Šefl, V.; Deduytsche, D.; Detavernier, C.: Investigation of the effect of magnesium on the microstructure and mechanical properties of NiTi shape memory alloy prepared by self-propagating high-temperature synthesis. Metallurgical and Materials Transactions A 2017, 48 (7), 3559-3569.10.1007/s11661-017-4105-y Search in Google Scholar

7. Figueira, N.; Silva, T.; Carmezim, M.; Fernandes, J.: Corrosion behaviour of NiTi alloy. Electrochimica Acta 2009, 54 (3), 921-926.10.1016/j.electacta.2008.08.001 Search in Google Scholar

8. Rondelli, G.: Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 1996, 17 (20), 2003-2008.10.1016/0142-9612(95)00352-5 Search in Google Scholar

9. Zhu, L.; Trepanier, C.; Pelton, A.; Fino, J. In Oxidation of nitinol and its effect on corrosion resistance, ASM Materials & Processes for Medical Device Conference, 2004; pp 156-161. Search in Google Scholar

10. Revie, R.W.; Uhlig, H.H., Uhlig‘s corrosion handbook. 2011.10.1002/9780470872864 Search in Google Scholar

11. Ding, R.; Shang, J.-X.; Wang, F.-H.; Chen, Y.: Electrochemical Pourbaix diagrams of NiTi alloys from first-principles calculations and experimental aqueous states. Computational Materials Science 2018, 143, 431-438. Search in Google Scholar

12. Klar, E.: ASM Handbook Volume 7: Powder Metallurgy. American Society for Metals: 1984. Search in Google Scholar

13. Li, Y.-H.; Rao, G.-B.; Rong, L.-J.; Li, Y.-Y.; Ke, W.: Effect of pores on corrosion characteristics of porous NiTi alloy in simulated body fluid. Materials Science and Engineering: A 2003, 363 (1), 356-359.10.1016/S0921-5093(03)00629-4 Search in Google Scholar

14. Sun, X. T.; Kang, Z. X.; Zhang, X. L.; Jiang, H. J.; Guan, R. F.; Zhang, X. P.: A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution. Electrochimica Acta 2011, 56 (18), 6389-6396.10.1016/j.electacta.2011.05.019 Search in Google Scholar

15. Cheng, F. T.; Lo, K. H.; Man, H. C.: An electrochemical study of the crevice corrosion resistance of NiTi in Hanks’ solution. Journal of Alloys and Compounds 2007, 437 (1), 322-328.10.1016/j.jallcom.2006.07.127 Search in Google Scholar

16. Kassab, E.; Neelakantan, L.; Frotscher, M.; Swaminathan, S.; Maaß, B.; Rohwerder, M.; Gomes, J.; Eggeler, G.: Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys. Materials and Corrosion 2014, 65 (1), 18-22.10.1002/maco.201206587 Search in Google Scholar

17. Wang, Q. Y.; Zheng, Y. F.: The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dental Materials 2008, 24 (9), 1207-1211.10.1016/j.dental.2008.01.011 Search in Google Scholar

18. dos Reis Barros, C. D.; Gomes, J. A. d. C. P.: Strain induced localized corrosion of NiTi, NiTiCo and NiTiCr alloys in 0.9% NaCl. Journal of the Mechanical Behavior of Biomedical Materials 2020, 112, 104015.10.1016/j.jmbbm.2020.104015 Search in Google Scholar

19. Shabalovskaya, S. A.; Rondelli, G. C.; Undisz, A. L.; Anderegg, J. W.; Burleigh, T. D.; Rettenmayr, M. E.: The electrochemical characteristics of native Nitinol surfaces. Biomaterials 2009, 30 (22), 3662-3671.10.1016/j.biomaterials.2009.03.034 Search in Google Scholar

20. Hang, R.; Ma, S.; Ji, V.; Chu, P. K.: Corrosion behavior of NiTi alloy in fetal bovine serum. Electrochimica Acta 2010, 55 (20), 5551-5560.10.1016/j.electacta.2010.04.061 Search in Google Scholar

21. Kassab, E.; Gomes, J. A. d. C. P.: Corrosion induced fracture of NiTi wires in simulated oral environments. Journal of the Mechanical Behavior of Biomedical Materials 2021, 116, 104323.10.1016/j.jmbbm.2021.104323 Search in Google Scholar

22. Ševčíková, J.; Bártková, D.; Goldbergová, M.; Kuběnová, M.; Čermák, J.; Frenzel, J.; Weiser, A.; Dlouhý, A.: On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys. Applied Surface Science 2018, 427, 434-443. Search in Google Scholar

23. Elahinia, M. H.; Hashemi, M.; Tabesh, M.; Bhaduri, S. B.: Manufacturing and processing of NiTi implants: A review. Progress in Materials Science 2012, 57 (5), 911-946.10.1016/j.pmatsci.2011.11.001 Search in Google Scholar

24. Li, B.-Y.; Rong, L.-J.; Li, Y.-Y.; Gjunter, V.: A recent development in producing porous Ni–Ti shape memory alloys. Intermetallics 2000, 8 (8), 881-884.10.1016/S0966-9795(00)00024-8 Search in Google Scholar

25. Whitney, M.; Corbin, S.; Gorbet, R.: Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Materialia 2008, 56 (3), 559-570.10.1016/j.actamat.2007.10.012 Search in Google Scholar

26. Zhang, L.; Zhang, Y.; Jiang, Y.; Zhou, R., Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. Journal of Alloys and Compounds 2015, 644, 513-522. Search in Google Scholar

27. Ye, L.; Liu, Z.; Raviprasad, K.; Quan, M.; Umemoto, M.; Hu, Z.: Consolidation of MA amorphous NiTi powders by spark plasma sintering. Materials Science and Engineering: A 1998, 241 (1-2), 290-293.10.1016/S0921-5093(97)00505-4 Search in Google Scholar

28. Chen, H.; Zheng, L.; Zhang, F.; Zhang, H.: Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. Materials Science and Engineering: A 2017, 708, 514-522. Search in Google Scholar

29. Novák, P.; Salvetr, P.; Školáková, A.; Karlík, M.; Kopeček, J. In Effect of Alloying Elements on the Reactive Sintering Behaviour of NiTi Alloy, Materials Science Forum, Trans Tech Publ: 2017; pp 447-451.10.4028/www.scientific.net/MSF.891.447 Search in Google Scholar

30. Clarke, B.; Carroll, W.; Rochev, Y.; Hynes, M.; Bradley, D.; Plumley, D.: Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 79 (1), 61-70.10.1002/jbm.a.3072016758455 Search in Google Scholar

31. Bassani, P.; Panseri, S.; Ruffini, A.; Montesi, M.; Ghetti, M.; Zanotti, C.; Tampieri, A.; Tuissi, A.: Porous NiTi shape memory alloys produced by SHS: microstructure and bio-compatibility in comparison with Ti2Ni and TiNi3. Journal of Materials Science: Materials in Medicine 2014, 25 (10), 2277-2285. Search in Google Scholar

32. Ding, R.; Shang, J.-X.; Wang, F.-H.; Chen, Y.: Electrochemical Pourbaix diagrams of Ni Ti alloys from first-principles calculations and experimental aqueous states. Computational Materials Science 2018, 143, 431-438. Search in Google Scholar

eISSN:
1804-1213
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas