Uneingeschränkter Zugang

Investigation on the microstructure, microhardness, and tribological behavior of AA1100-hBN surface composite


Zitieren

1. Mishra, R.S., Ma, Z.Y., Charit, I.: Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A 2003, 341, 307–310. http://dx.doi.org/10.1016/S0921-5093(02)00199-510.1016/S0921-5093(02)00199-5 Search in Google Scholar

2. Pantelis, D., Tissandier, A., Manolatos, P., Ponthiaux, P.: Formation of wear resistant Al–SiC surface composite by laser melt-particle injection process. Mater. Sci. Tech. 1995, 11, 299–303. http://dx.doi.org/10.1179/mst.1995.11.3.29910.1179/mst.1995.11.3.299 Search in Google Scholar

3. Ni, D.R., Wang, J.J., Zhou, Z.N., Ma, Z.Y.: Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloy Compd. 2014, 586, 368–374. http://dx.doi.org/10.1016/j.jallcom.2013.10.01310.1016/j.jallcom.2013.10.013 Search in Google Scholar

4. Dolatkhah, A., Golbabaei, P., Givi, M.K.B., Molaiekiya, F., 2012. Investigating effects of process parameters on Microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Design 2012, 37, 458–464. http://dx.doi.org/10.1016/j.matdes.2011.09.03510.1016/j.matdes.2011.09.035 Search in Google Scholar

5. Khayyamin, D., Mostafapour, A., Keshmiri, R.: The effect of pro-cess parameters on microstructural characteristics of AZ91/SiO2com-posite fabricated by FSP. Mater. Sci. Eng. A 2013, 559, 217–221. http://dx.doi.org/10.1016/j.msea.2012.08.08410.1016/j.msea.2012.08.084 Search in Google Scholar

6. Mishra, R.S., Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. 2005, R50, 1–78. http://dx.doi.org/10.1016/j.mser.2005.07.00110.1016/j.mser.2005.07.001 Search in Google Scholar

7. Zohoor, M., Besharati Givi, M.K., Salami, P.: Effects of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater. Design 2012, 39, 358–365, http://dx.doi.org/10.1016/j.matdes.2012.02.04210.1016/j.matdes.2012.02.042 Search in Google Scholar

8. Bauri, R., Yadav, D., Suhas, G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater. Sci. Eng. A 2011, 528, 4732–4739, http://dx.doi.org/10.1016/j.msea.2011.02.08510.1016/j.msea.2011.02.085 Search in Google Scholar

9. R. Vaira Vignesh, R. Padmanaban: Modelling tensile strength of friction stir welded Aluminium Alloy 1100 using Fuzzy logic. 11th International Conference on Intelligent Systems and Control (ISCO) 2017. https://www.sciencedirect.com/science/article/pii/S221478531831141610.1109/ISCO.2017.7856034 Search in Google Scholar

10. R. Vaira Vignesh and R. Padmanaban. Influence of friction stir processing parameters on the wear resistance of aluminium alloy AA5083. Materials Today: Proceedings 2018, 5, 7437–7446. https://www.sciencedirect.com/science/article/pii/S221478531732685810.1016/j.matpr.2017.11.415 Search in Google Scholar

11. Vaira Vignesh Ramalingam, Padmanaban Ramasamy and Madhav Datta. Microstructure, hardness and corrosion behaviour of friction-stir processed AA5083. Anti-Corrosion Methods and Materials 2019, 66 (6), 791-801. https://www.emerald.com/insight/content/doi/10.1108/ACMM-07-2017-1816/full/html10.1108/ACMM-07-2017-1816 Search in Google Scholar

12. R. Vaira Vignesh, R. Padmanaban, M. Govindaraju and G. Suganya Priyadharshini., 2019. Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Materials Research Express 2019, 6 (8), 085401. https://iopscience.iop.org/article/10.1088/2053-1591/ab1ded/meta10.1088/2053-1591/ab1ded Search in Google Scholar

13. Romeo Sephyrin Fono-Tamo., Esther Titilayo Akinlabi., Jen Tien-Chien., Kazeem Oladele Sanusi. Microstructural Investigation Of GYP/Al Surface Composites Fabricated By Friction Stir Processing. IEEE 10th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT 2019), https://ieeexplore.ieee.org/document/871205210.1109/ICMIMT.2019.8712052 Search in Google Scholar

14. K.L. Tee, L. Lu, M.O. Lai. Wear performance of in-situ Al–TiB composite. Wear 2000, 240 (1-2), 59–64. https://www.sciencedirect.com/science/article/abs/pii/S004316480000337910.1016/S0043-1648(00)00337-9 Search in Google Scholar

15. Lifeng Zhang., Ramya Chandrasekar., Jane Y. Howe., Michael K. West., Nyle E. Hedin., William J. Arbegast., and Hao Fong: A Metal Matrix Composite Prepared from Electrospun TiO2 Nanofibers and an Al 1100 Alloy via Friction Stir Processing. Applied Materials and Interfaces 2009, 1 (5), 987–991. https://www.researchgate.net/publication/4280536010.1021/am900095x Search in Google Scholar

16. Devinder Yadav., Ranjit Bauri: Effect of friction stir processing on microstructure and mechanical properties of aluminium. Materials Science and Engineering A 2012, 539, 85–92. https://www.researchgate.net/publication/25733692610.1016/j.msea.2012.01.055 Search in Google Scholar

17. H.S. Grewal., H.S. Arora, H. Singh., A. Agrawal: Surface modification of hydroturbine steel using friction stir processing. Applied Surface Science 2013, 268, 547–555. https://www.sciencedirect.com/science/article/abs/pii/S016943321300023810.1016/j.apsusc.2013.01.006 Search in Google Scholar

18. X.C. Liu., Y.F. Sun., Y. Morisada., H. Fujii: Dynamics of rotational flow in friction stir welding of aluminium alloys. Journal of Materials Processing Technology 2017, 252. https://www.researchgate.net/publication/32066711110.1016/j.jmatprotec.2017.10.033 Search in Google Scholar

19. S. Selvakumar, I., Dinaharan, R., Palanivel. B., Ganesh Babu: Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Materials Characterization 2017, 125, 13-22. https://www.sciencedirect.com/science/article/abs/pii/S10445803163 0694510.1016/j.matchar.2017.01.016 Search in Google Scholar

20. Morteza Shamanian., Hossein Mostaan., Mehdi Safari., Jerzy A. Szpunar: Friction stir modifications of GTA 7075-T6 Al alloy weld joints: EBSD study and microstructural evolutions. Archives of Civil and Mechanical Engineering 2017, 17, 574-585. https://www.sciencedirect.com/science/article/abs/pii/S164496651730011010.1016/j.acme.2017.01.002 Search in Google Scholar

21. Devinder Yadav, Ranjit Bauri: Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite. Materials Science and Engineering A 2011, 528, 1326–1333. https://www.sciencedirect.com/science/article/abs/pii/S092150931001200110.1016/j.msea.2010.10.035 Search in Google Scholar

22. Parviz Asadi, Ghader Faraji., Mohammad K. Besharati: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 2010, 51, 247–260. https://www.researchgate.net/publication/22686801410.1007/s00170-010-2600-z Search in Google Scholar

23. M. Azizieh., A.H. Kokabi., P. Abachi: Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Materials and Design 2011, 32, 2034–2041. https://www.sciencedirect.com/science/article/pii/S026130691000681310.1016/j.matdes.2010.11.055 Search in Google Scholar

24. V. Balasubramanian: Relationship between base metal properties and friction stir welding process parameters. Materials Science and Engineering A 2008, 480, 397–403. https://www.sciencedirect.com/science/article/pii/S026130691000194910.1016/j.msea.2007.07.048 Search in Google Scholar

25. Mohsen Barmouz., Mohammad Kazem Besharati Givi., Javad Seyfi: On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior. Materials Characterization 2011, 62, 108-117. https://www.sciencedirect.com/science/article/abs/pii/S104458031000323210.1016/j.matchar.2010.11.005 Search in Google Scholar

26. Adem Kurt., Ilyas Uygu., Eren Cete. Surface modification of aluminium by friction stir processing. Journal of Materials Processing Technology 2011, 211, 313–317. https://www.researchgate.net/publication/22923199010.1016/j.jmatprotec.2010.09.020 Search in Google Scholar

27. Mohammad Ali Moghaddas., Seyed Farshid Kashani-Bozorg., 2012. Effects of thermal conditions on micro-structure in nano composite of Al/Si3N4 produced by friction stir processing. Materials Science and Engineering A 2013, 559, 187–193. https://www.sciencedirect.com/science/article/abs/pii/S092150931201194X.10.1016/j.msea.2012.08.073 Search in Google Scholar

28. M. Mosallaee., M. Dehghan: Improvement of Structural and Mechanical Properties of Al-1100 Alloy via Friction Stir Processing. ASM International 2014, 1059-9495. https://link.springer.com/article/10.1007/s11665-014-1155-910.1007/s11665-014-1155-9 Search in Google Scholar

29. M. Salehi, M. Saadatmand, J., Aghazadeh Mohandesi: Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans. Nonferrous Met. Soc. China 2012, 22, 1055-1063. https://www.sciencedirect.com/science/article/abs/pii/S100363261161283110.1016/S1003-6326(11)61283-1 Search in Google Scholar

eISSN:
1804-1213
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas