1. bookVolumen 63 (2019): Heft 4 (December 2019)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating

Online veröffentlicht: 24 Jan 2020
Volumen & Heft: Volumen 63 (2019) - Heft 4 (December 2019)
Seitenbereich: 138 - 147
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Gholami, M.; Mhaede, M.; Pastorek, F.; Altenberger, I.; Hadzima, B.; Wollmann, M.; Wagner, L.: Corrosion Behavior and Mechanical Properties of Ultrafine-Grained Pure Copper with Potential as a Biomaterial. Advanced Engineering Materials, 2016, 18 (4), 615–623. https://doi.org/10.1002/adem.201500269.10.1002/adem.201500269DOI öffnenSearch in Google Scholar

2. Kirkland, N. T.; Birbilis, N.: Magnesium Biomaterials; SpringerBriefs in Materials; Springer International Publishing: Cham, 2014, 148. https://doi.org/10.1007/978-3-319-02123-2.10.1007/978-3-319-02123-2DOI öffnenSearch in Google Scholar

3. Duygulu, O.; Kaya, R. A.; Oktay, G.; Kaya, A. A. Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Materials Science Forum, 2007, 546–549, 421–424. https://doi.org/10.4028/www.scientific.net/MSF.546-549.421.10.4028/www.scientific.net/MSF.546-549.421DOI öffnenSearch in Google Scholar

4. Ren, Y.; Huang, J.; Zhang, B.; Yang, K.: Preliminary Study of Biodegradation of AZ31B Magnesium Alloy. Frontiers of Materials Science in China, 2007, 1 (4), 401–404. https://doi.org/10.1007/s11706-007-0073-2.10.1007/s11706-007-0073-2DOI öffnenSearch in Google Scholar

5. Hiromoto, S.; Inoue, M.; Taguchi, T.; Yamane, M.; Ohtsu, N.: In vitro and in vivo Biocompatibility and Corrosion Behaviour of a Bioabsorbable Magnesium Alloy Coated with Octacalcium Phosphate and Hydroxyapatite. Acta Biomaterialia, 2015, 11, 520–530. https://doi.org/10.1016/J.ACTBIO.2014.09.026.10.1016/J.ACTBIO.2014.09.026DOI öffnenSearch in Google Scholar

6. Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; et al.: In vitro and in vivo Evaluation of MgF2 Coated AZ31 Magnesium Alloy Porous Scaffolds for Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 330–340. https://doi.org/10.1016/J.COLSURFB.2016.10.037.10.1016/J.COLSURFB.2016.10.037DOI öffnenSearch in Google Scholar

7. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Progress in Natural Science: Materials International, 2014, 24 (5), 414–422. https://doi.org/10.1016/J.PNSC.2014.08.014.10.1016/J.PNSC.2014.08.014DOI öffnenSearch in Google Scholar

8. Radha, R.; Sreekanth, D.: Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – a Review. Journal of Magnesium and Alloys. National Engg. Reaserch Center for Magnesium Alloys September 1, 2017, 286–312. https://doi.org/10.1016/j.jma.2017.08.003.10.1016/j.jma.2017.08.003Search in Google Scholar

9. Fischerauer, S. F.; Kraus, T.; Wu, X.; Tangl, S.; Sorantin, E.; Hänzi, A. C.; Löffler, J. F.; Uggowitzer, P. J.; Weinberg, A. M.: In Vivo Degradation Performance of Micro-Arc-Oxidized Magnesium Implants: A Micro-CT Study in Rats. Acta Biomaterialia, 2013, 9 (2), 5411–5420. https://doi.org/10.1016/j.actbio.2012.09.017.10.1016/j.actbio.2012.09.01723022544DOI öffnenSearch in Google Scholar

10. Minárik, P.; Král, R.; Hadzima, B.: Substantially Higher Corrosion Resistance in AE42 Magnesium Alloy through Corrosion Layer Stabilization by ECAP Treatment. Acta Physica Polonica A, 2012, 122 (3), 614–617. https://doi.org/10.12693/APhysPolA.122.614.10.12693/APhysPolA.122.614Search in Google Scholar

11. Gholami-Kermanshahi, M.; Neubert, V.-D.; Tavakoli, M.; Pastorek, F.; Smola, B.; Neubert, V.: Effect of ECAP Processing on Corrosion Behavior and Mechanical Properties of the ZFW MP Magnesium Alloy as a Biodegradable Implant Material. Advanced Engineering Materials, 2018, 20 (10), 1800121. https://doi.org/10.1002/adem.201800121.10.1002/adem.201800121Search in Google Scholar

12. Mhaede, M.; Pastorek, F.; Hadzima, B.: Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD). Materials Science and Engineering: C, 2014, 39, 330–335. https://doi.org/10.1016/J.MSEC.2014. 03.023.10.1016/J.MSEC.2014.03.023DOI öffnenSearch in Google Scholar

13. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Corrosion Performance of AZ31 Magnesium Alloy Treated by Ultrasonic Impact Peening (UIP). Materials Today: Proceedings, 2018, 5 (13), 26687–26692. https://doi.org/10.1016/J.MATPR.2018.08.136.10.1016/J.MATPR.2018.08.136DOI öffnenSearch in Google Scholar

14. Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T.: In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials, 2009, 30 (4), 484–498. https://doi.org/10.1016/J.BIOMATERIALS.2008.10.021.10.1016/J..2008.10.021DOI öffnenSearch in Google Scholar

15. Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D.: Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Bio-degradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2013, 2 (6), 218–240. https://doi.org/10.5923/j.ajbe.20120206.02.10.5923/j.ajbe.20120206.02DOI öffnenSearch in Google Scholar

16. Li, J.; Huang, J.; Tian, Y.; Liu, C.: Corrosion Action and Passivation Mechanism of Magnesium Alloy in Fluoride Solution. Transactions of Nonferrous Metals Society of China, 2009, 19 (1), 50–54. https://doi.org/10.1016/S1003-6326(08)60227-7.10.1016/S1003-6326(08)60227-7DOI öffnenSearch in Google Scholar

17. Mao, L.; Yuan, G.; Niu, J.; Zong, Y.; Ding, W.: In Vitro Degradation Behavior and Biocompatibility of Mg–Nd– Zn–Zr Alloy by Hydrofluoric Acid Treatment. Materials Science and Engineering: C, 2013, 33 (1), 242–250. https://doi.org/10.1016/j.msec.2012.08.036.10.1016/j.msec.2012.08.03625428068DOI öffnenSearch in Google Scholar

18. Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Zhang, B.; Yang, K.: Fluoride Treatment and in Vitro Corrosion Behavior of an AZ31B Magnesium Alloy. Materials Science and Engineering: C, 2010, 30 (5), 740–748. https://doi.org/10.1016/j.msec.2010.03.007.10.1016/j.msec.2010.03.007DOI öffnenSearch in Google Scholar

19. Ohse, T.; Tsubakino, H.; Yamamoto, A.: Surface Modification on Magnesium Alloys by Coating with Magnesium Fluorides. Materials Science Forum, 2005, 475–479, 505–508. https://doi.org/10.4028/www.scientific.net/MSF.475-479.505.10.4028/www.scientific.net/MSF.475-479.505DOI öffnenSearch in Google Scholar

20. Yamamoto, A.; Terawaki, T.; Tsubakino, H.: Microstructures and Corrosion Properties on Fluoride Treated Magnesium Alloy. Materials Transactions, 2008, 49 (5), 1042–104. https://doi.org/10.2320/matertrans.MC200704.10.2320/matertrans.MC200704DOI öffnenSearch in Google Scholar

21. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357(15), 638–650. https://doi.org/10.1016/j.surfcoat.2018.10.038.10.1016/j.surfcoat.2018.10.038DOI öffnenSearch in Google Scholar

22. Chun-Yan, Z.; Rong-Chang, Z.; Cheng-Long, L.; Jia-Cheng, G.: Comparison of Calcium Phosphate Coatings on Mg–Al and Mg–Ca Alloys and Their Corrosion Behavior in Hank’s Solution. Surface and Coatings Technology, 2010, 204 (21–22), 3636–3640. https://doi.org/10.1016/J.SURFCOAT.2010.04.038.10.1016/J.SURFCOAT.2010.04.038DOI öffnenSearch in Google Scholar

23. Yang, J. X.; Cui, F. Z.; Yin, Q. S.; Zhang, Y.; Zhang, T.; Wang, X. M.: Characterization and Degradation Study of Calcium Phosphate Coating on Magnesium Alloy Bone Implant In Vitro. IEEE Transactions on Plasma Science, 2009, 37 (7), 1161–1168. https://doi.org/10.1109/TPS.2009.2016664.10.1109/TPS.2009.2016664DOI öffnenSearch in Google Scholar

24. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Electrochemical Impedance Spectroscopy Characterization of ZW3 Magnesium Alloy Coated by DCPD Using LASV Deposition Technique. Acta Metallurgica Slovaca, 2017, 23 (2), 147–154. https://doi.org/10.12776/ams.v23i2.900.10.12776/ams.v23i2.900Search in Google Scholar

25. Hadzima, B.; Mhaede, M.; Pastorek, F.: Electrochemical Characteristics of Calcium-Phosphatized AZ31 Magnesium Alloy in 0.9 % NaCl Solution. Journal of Materials Science: Materials in Medicine, 2014, 25 (5), 1227–1237. https://doi.org/10.1007/s10856-014-5161-0.10.1007/s10856-014-5161-0Search in Google Scholar

26. Pastorek, F.; Hadzima, B.; Omasta, M.; Mhaede, M.: Effect of Electrodeposition Temperature on Corrosion Resistance of Calcium Phosphate. Acta Metallurgica Slovaca, 2014, 20 (2), 200–208. https://doi.org/10.12776/ams.v20i2.290.10.12776/ams.v20i2.290Search in Google Scholar

27. Djokić, S. S.: Biomedical Applications, 1st ed.; Springer: US, 211, 2012.Search in Google Scholar

28. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C.: Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants. Surface and Coatings Technology, 2007, 202 (3), 590–598. https://doi.org/10.1016/j.surfcoat.2007.06.035.10.1016/j.surfcoat.2007.06.035DOI öffnenSearch in Google Scholar

29. Drábiková, J.; Fintová, S.; Tkacz, J.; Doležal, P.; Wasserbauer, J.: Unconventional Fluoride Conversion Coating Preparation and Characterization. Anti-Corrosion Methods and Materials, 2017, 64 (6), 613-619. https://doi.org/10.1108/ACMM-02-2017-1757.10.1108/ACMM-02-2017-1757DOI öffnenSearch in Google Scholar

30. Drábiková, J.; Pastorek, F.; Fintová, S.; Doležal, P.; Wasserbauer, J.: Zvýšenie koróznej odolnosti biokompatibilnej horčíkovej zliatiny AZ61 pomocou fluoridového konverzného povlaku. 2016, 60 (5), 132–138. https://doi.org/10.1515/kom-2016-0021.10.1515/kom-2016-0021DOI öffnenSearch in Google Scholar

31. Flaten, T. P.: Aluminium as a Risk Factor in Alzheimer’s Disease, with Emphasis on Drinking Water. Brain Research Bulletin, 2001, 55 (2), 187–196. https://doi.org/10.1016/S0361-9230(01)00459-2.10.1016/S0361-9230(01)00459-2DOI öffnenSearch in Google Scholar

32. ASTM B80 – 15 Standard Specification for Magnesium-Alloy Sand Castings, 2015.Search in Google Scholar

33. Cell Culture Media and Reagents Product Selection Guide European Edition www.corning.com/lifesciences. (accessed Jul 9, 2018).Search in Google Scholar

34. Song, Y.; Shan, D.; Chen, R.; Han, E.-H.: Corrosion Characterization of Mg–8Li Alloy in NaCl Solution. Corrosion Science, 2009, 51 (5), 1087–1094. https://doi.org/10.1016/j.corsci.2009.03.011.10.1016/j.corsci.2009.03.011Search in Google Scholar

35. Kuchariková, L.; Liptáková, T.; Tillová, E.; Kajánek, D.; Schmidová, E.: Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals, 2018, 8 (8), 581. https://doi.org/10.3390/met8080581.10.3390/met8080581Search in Google Scholar

36. Sudarshana, S.; Jagannath, N.; A. Nityananda, S.: Influence of Sulfate Ion Concentration and PH on the Corrosion of Mg–Al–Zn–Mn (GA9) Magnesium Alloy. Journal of Magnesium and Alloys, 2015, 3 (3), 258–270. https://doi.org/10.1016/J.JMA.2015.07.004.10.1016/J.JMA.2015.07.004DOI öffnenSearch in Google Scholar

37. Li, C. Q.; Xu, D. K.; Chen, X.-B.; Wang, B. J.; Wu, R. Z.; Han, E. H.; Birbilis, N.: Composition and Microstructure Dependent Corrosion Behaviour of Mg-Li Alloys. Electrochimica Acta, 2018, 260, 55–64. https://doi.org/10.1016/J.ELECTACTA.2017.11.091.10.1016/J.ELECTACTA.2017.11.091DOI öffnenSearch in Google Scholar

38. King, A. D.; Birbilis, N.; Scully, J. R.: Accurate Electro-chemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 2014, 121, 394–406. https://doi.org/10.1016/J.ELECTACTA.2013.12.124.10.1016/J.ELECTACTA.2013.12.124DOI öffnenSearch in Google Scholar

39. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357, 638–650. https://doi.org/10.1016/J.SURFCOAT.2018.10.038.10.1016/J.SURFCOAT.2018.10.038DOI öffnenSearch in Google Scholar

40. Feng, X.; Shi, L.-Y.; Hang, J.-Z.; Zhang, J.-P.; Fang, J.-H.; Zhong, Q.-D.: Low Temperature Synthesis of Boron Phosphide Nanocrystals. Materials Letters, 2005, 59 (8–9), 865–867. https://doi.org/10.1016/j.matlet.2004.10.067.10.1016/j.matlet.2004.10.067DOI öffnenSearch in Google Scholar

41. Drábiková, J.; Fintová, S.; Doležal, P.; Wasserbauer, J.; Ptáček, P.: Characterization of Unconventional Fluoride Conversion Coating Prepared on AZ31 Magnesium Alloy; Materials Engineering - Materiálové inžinierstvo (MEMI), 2018; 24, 72-87.Search in Google Scholar

42. Drábiková, J.; Pastorek, F.; Fintová, S.; Dolezal, P.; Wasserbauer, J.: Improvement of Bio-Compatible AZ61 Magnesium Alloy Corrosion Resistance by Fluoride Conversion Coating. Koroze a Ochrana Materialu, 2016, 60 (5), 132-137. https://doi.org/10.1515/kom-2016-0021.10.1515/kom-2016-0021DOI öffnenSearch in Google Scholar

43. Jin, S.; Amira, S.; Ghali, E.: Electrochemical Impedance Spectroscopy Evaluation of the Corrosion Behavior of Die Cast and Thixocast AXJ530 Magnesium Alloy in Chloride Solution. Advanced Engineering Materials, 2007, 9 (1–2), 75–83. https://doi.org/10.1002/adem.200600199.10.1002/adem.200600199DOI öffnenSearch in Google Scholar

44. Chen, J.; Wang, J.; Han, E.; Dong, J.; Ke, W.: AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution. Electrochimica Acta, 2007, 52 (9), 3299–3309. https://doi.org/10.1016/J.ELECTACTA.2006.10.007.10.1016/j.electacta.2006.10.007Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo