1. bookVolumen 63 (2019): Heft 3 (November 2019)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Static corrosion tests of iron-based biomaterials in the environment of simulated body fluids

Online veröffentlicht: 21 Dec 2019
Volumen & Heft: Volumen 63 (2019) - Heft 3 (November 2019)
Seitenbereich: 113 - 120
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Zheng, Y.F.; Gu, X.N.; Witte, F.: Biodegradable metals. Mater. Sci. Eng. R Rep.2014, 77, 1–34.Search in Google Scholar

2. Moravej, M.; Mantovani, D.: Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci.2011, 12 (7), 4250–4270.Search in Google Scholar

3. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Prog. Nat. Sci. Mater.2014, 24 (5), 414–422.Search in Google Scholar

4. Cheng, J.; Liu, B.; Wu, Y.; Zheng, Y. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol.2013, 29 (7), 619–627.Search in Google Scholar

5. Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J. W.: Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater.2015, 4 (13), 1915–1936.Search in Google Scholar

6. Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K. U.; Willumeit, R.; Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid St. M.2008, 12 (5-6), 63–72.Search in Google Scholar

7. Zhang, E.; Chen, H.; Shen, F.: Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J. Mater. Sci. Mater. Med.2010, 21 (7), 2151–2163.Search in Google Scholar

8. Alabbasi, A.; Liyanaarachchi, S.; Kannan, M. B.: Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films.2012, 520 (23), 6841–6844.Search in Google Scholar

9. Haverová, L.; Oriňaková, R.; Oriňak, A.; Gorejová, R.; Baláž, M.; Vanýsek, P.; et al.: An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications. Metals.2018, 8 (7), 499.Search in Google Scholar

10. Yusop, A. H. M.; Daud, N. M.; Nur, H.; Kadir, M. R. A.; Hermawan, H.: Controlling the degradation kinetics of porous iron by poly (lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific reports.2015, 5, 11194.Search in Google Scholar

11. Briones, A. V.; Sato, T.; Bigol, U. G.: Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv. Chem. Engineer. Sci.2014, 4 (02), 233.Search in Google Scholar

12. Demir, A. G.; Previtali, B.; Biffi, C. A.: Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents. Adv. Mater. Sci. Eng.2013, 2013, 1–11.Search in Google Scholar

13. Lindner, M.; Hoeges, S.; Meiners, W.; Wissenbach, K.; Smeets, R.; Telle, R.; et al.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res. A.2011, 97 (4), 466–471.Search in Google Scholar

14. Hong, D.; Chou, D. T.; Velikokhatnyi, O. I.; Roy, A.; Lee, B.; Swink, I.; et al.: Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater.2016, 45, 375–386.Search in Google Scholar

15. Andani, M. T.; Moghaddam, N. S.; Haberland, C.; Dean, D.; Miller, M. J.; Elahinia, M.: Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater.2014, 10 (10), 4058–4070.Search in Google Scholar

16. Aghion, E.; Perez, Y.: Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Mater. Charact.2014, 96, 78–83.Search in Google Scholar

17. Oriňaková, R.; Oriňak, A.; Bučková, L. M.; Giretová, M.; Medvecký, Ľ.; Labbanczová, E.; et al.: Iron based degradable foam structures for potential orthopedic applications. Int. J. Electrochem. Sci.2013, 8, 12451–12465.Search in Google Scholar

18. Hrubovčáková, M.; Kupková, M.; Džupon, M.; Giretová, M.; Medvecký, Ľ.; & Džunda, R.: Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int. J. Electrochem. Sci.2017, 12, 11122–11136.Search in Google Scholar

19. Li, Y.; Jahr, H.; Lietaert, K.; Pavanram, P.; Yilmaz, A.; Fockaert, L. I.; et al.: Additively manufactured biodegradable porous iron. Acta Biomater.2018, 77, 380–393.Search in Google Scholar

20. Wen, Z., Zhang, L., Chen, C., Liu, Y., Wu, C., & Dai, C.: A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater. Sci. Eng. C.2013, 33 (3), 1022–1031.Search in Google Scholar

21. Gorejová, R.; Haverová, L.; Oriňaková, R.; Oriňak, A.; Oriňak, M.: Recent advancements in Fe-based biodegradable materials for bone repair. J. Mater. Sci.2019, 54 (3), 1913–1947.Search in Google Scholar

22. Peng, M.; Liu, W.; Yang, G.; Chen, Q.; Luo, S.; Zhao, G.; Yu, L.: Investigation of the degradation mechanism of cross-linked polyethyleneimine by NMR spectroscopy. Polymer Degrad. Stab.2008, 93 (2), 476–482.Search in Google Scholar

23. Čapek, J.; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, D.: Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X= Pd, Ag and C) alloys. Mater. Chem. Phys.2016, 181, 501–511.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo