1. bookVolumen 62 (2018): Heft 1 (February 2018)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

High temperature alloys stability testing in impure helium

Online veröffentlicht: 16 Feb 2018
Volumen & Heft: Volumen 62 (2018) - Heft 1 (February 2018)
Seitenbereich: 19 - 25
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1804-1213
Erstveröffentlichung
03 Apr 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Within the national and international research program of materials for advanced nuclear reactors Czech organizations contributed with several tests of metallic alloys. The specimens of the alloys were first exposed in the long term (up to 1500 hours) in simulated advanced gas cooled reactor coolant environment at 750-900 °C. After exposure the degradation of tested materials was explored, especially changes in material microstructure, corrosion damage and corrosion layer composition and in some cases also changes in mechanical properties were observed. In this paper selected results of exposure tests in high temperature helium of alloy 800 H, austenitic steel 316L and high-temperature nickel alloys are presented.

1. A technology roadmap for Generation IV Nuclear Energy System, U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum 2002, [online]. http://130.88.20.21/uknuclear/pdfs/GenIV_Roadmap_September_2002.pdf (accessed 1 Jan 2018).Search in Google Scholar

2. Kissane M. P., Nuclear Engineering and Design2009, 239, 3076–3091.10.1016/j.nucengdes.2009.09.012Search in Google Scholar

3. ARCHER final meeting. [online] http://archer-project.eu/. (accessed 1 Jan 2018).Search in Google Scholar

4. Berka J., Paliva2013, 5(4), 136–141.10.35933/paliva.2013.04.05Search in Google Scholar

5. Natesan K., Purohit A., Tam S. W., report NUREG/CR-6824: Materials Behaviour in HTGR Environments, Office of Nuclear Regulatory Research, Washington, 2003.Search in Google Scholar

6. Berka J., Víden I., Paliva2014, 6(1), 7–19.Search in Google Scholar

7. Berka J., Černý M., Matěcha J., Paliva2010, 2, 64–70.Search in Google Scholar

8. Berka J., Hlinčík T., Víden I., Hudský T., Vít J., Progress in Nuclear Energy2015, 85, 156–163.10.1016/j.pnucene.2015.06.003Search in Google Scholar

9. Berka J., Matěcha J., Černý M., Víden I., Sus F., Hájek P., Nuclear Engineering and Design2012, 251, 203–207.10.1016/j.nucengdes.2011.10.045Search in Google Scholar

10. Hotař A., Palm M., Intermetallics2010, 18,1390–1395.10.1016/j.intermet.2010.02.014Search in Google Scholar

11. Berka J., Vilémová M., Sajdl P., Journal of Nuclear Materials2015, 464, 221–229.10.1016/j.jnucmat.2015.03.054Search in Google Scholar

12. Kunzová K., Berka J., Siegl J., Haušild P., Journal of Nuclear Materials2016, 472, 47–54.10.1016/j.jnucmat.2016.01.020Search in Google Scholar

13. Marušáková D., Berka J., Sajdl P., Koroze a ochrana materiálu2015, 59(4), 103–106.10.1515/kom-2015-0021Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo