Zitieren

1. King, F., et al., Modelling long term corrosion behaviour of copper canisters in KBS-3 repository. Corrosion Engineering, Science and Technology 2011, 46 (2), 217-222.10.1179/18211Y.0000000004Search in Google Scholar

2. Smith, J., et al., Sulfi de Film Formation on Copper Under Electrochemical and Natural Corrosion Conditions. Corrosion 2007, 63 (2), 135-144.10.5006/1.3278338Search in Google Scholar

3. Arilahti, E., et al., Evidence for internal diffusion of sulphide from groundwater into grain boundaries ahead of crack tip in Cu OFP copper. Corrosion Engineering, Science and Technology 2011, 46 (2), 134-137.10.1179/1743278210Y.0000000009Search in Google Scholar

4. Rosborg, B., et al., Corrosion rate of pure copper in an oxic bentonite/saline groundwater environment. Corrosion Engineering, Science and Technology 2011, 46 (2), 148-152.10.1179/1743278210Y.0000000015Search in Google Scholar

5. Smart, N., et al., Further studies of in situ corrosion testing of miniature copper-cast iron nuclear waste canisters. Corrosion Engineering, Science and Technology 2011, 46 (2), 142-147.10.1179/1743278210Y.0000000020Search in Google Scholar

6. Smith, J. M., et al., The Electrochemical Response of Preoxidized Copper in Aqueous Sulfi de Solutions. Journal of The Electrochemical Society 2007, 154 (8), C431.10.1149/1.2745647Search in Google Scholar

7. Vuorinen, U., et al. Solubility database forTILA-99; POSIVA: 1998.Search in Google Scholar

8. Chen, J., et al., Kinetics of Corrosion Film Growth on Copper in Neutral Chloride Solutions Containing Small Concentrations of Sulfi de. Journal of The Electrochemical Society 2010, 157 (10), C338.10.1149/1.3478570Search in Google Scholar

9. Chen, J., et al., Rate controlling reactions for copper corrosion in anaerobic aqueous sulphide solutions. Corrosion Engineering, Science and Technology 2011, 46 (2), 138-141.10.1179/1743278210Y.0000000007Search in Google Scholar

10. King, F., et al., Progress in the understanding of the longterm corrosion behaviour of copper canisters. Journal of Nuclear Materials 2013, 438 (1-3), 228-237.10.1016/j.jnucmat.2013.02.080Search in Google Scholar

11. Stoulil, J., et al., Infl uence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment. Journal of Nuclear Materials 2013, 443 (1-3), 20-25.10.1016/j.jnucmat.2013.06.031Search in Google Scholar

12. Dubus, M., et al., Monitoring copper and silver corrosion in different museum environments by electrical resistance measurement. Studies in Conservation 2010, 55 (2), 121-133.10.1179/sic.2010.55.2.121Search in Google Scholar

13. Dubus, M.; Prosek, T., Standardized assessment of cultural heritage environments by electrical scientifi c paper resistance measurements. e-Preservation Science 2012, 9, 67-71.Search in Google Scholar

14. Kouril, M., et al., Corrosion monitoring in archives by the electrical resistance technique. Journal of Cultural Heritage 2014, 15 (2), 99-10310.1016/j.culher.2013.04.002Search in Google Scholar

15. Kouril, M., et al., High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corrosion Engineering, Science and Technology 2013, 48 (4), 282-287.10.1179/1743278212Y.0000000074Search in Google Scholar

16. Kouřil, M., et al., Corrosion monitoring in the hands of restorers and conservators. Koroze a ochrana materiálů 2012, 56 (3), 67-75.Search in Google Scholar

17. Prosek, T., et al., Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers. Corrosion Engineering, Science and Technology 2008, 43 (2), 129-133.10.1179/174327808X286374Search in Google Scholar

18. Prosek, T., et al., Application of automated corrosion sensors for monitoring the rate of corrosion during accelerated corrosion tests. Materials and Corrosion 2014, 65 (5), 448-456. 10.1002/maco.201206655Search in Google Scholar

eISSN:
1804-1213
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Chemieingenieurwesen, Materialwissenschaft, Keramik und Glas