Development of Hybrid Intrusion Detection Systems for IoT Enabled Devices Utilizing Resource Constraint Learning Frameworks
, und
15. Juni 2024
Über diesen Artikel
Artikel-Kategorie: Article
Online veröffentlicht: 15. Juni 2024
Seitenbereich: 60 - 76
Eingereicht: 11. Feb. 2024
Akzeptiert: 01. Mai 2021
DOI: https://doi.org/10.2478/jsiot-2024-0005
Schlüsselwörter
© 2023 Rachana P et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Comparitive Analysis between different models for intrusion detection
Algorithm | Accuracy | Precision | Recall | F1-Score | Specificity |
---|---|---|---|---|---|
CNN | 0.75 | 0.78 | 0.78 | 0.79 | 0.78 |
RNN | 0.77 | 0.8 | 0.79 | 0.8 | 0.8 |
LSTM | 0.85 | 0.86 | 0.86 | 0.87 | 0.88 |
GRU | 0.89 | 0.9 | 0.9 | 0.89 | 0.9 |
Proposed Model | 0.95 | 0.96 | 0.95 | 0.96 | 0.95 |
Hyperparameter Tuning for proposed Model
Learning Rate | No. of units | Dropout Rate | Optimizer |
---|---|---|---|
0.001 | 16 | 0.2 | Adam |
0.01 | 32 | 0.3 | SGD |
0.1 | 64 | 0.5 | RMSProp |
Evaluation of Performance Metrics
Performance Measures | Expression |
---|---|
Accuracy |
|
Precision |
|
Recall |
|
F1-Score |
|
Specificity |
|