[Abu-Nimeh, S., D. Nappa, X. Wang, and S. Nair. 2008. . “Bayesian Additive Regression Trees-Based Spam Detection for Enhanced Email Privacy.” 2008 Third International Conference on Availability, Reliability and Security, Barcelona, Spain, 4–7 March 2008 IEEE. Available at: https://ieeexplore.ieee.org/abstract/document/4529459 (accessed May 2020).10.1109/ARES.2008.136]Search in Google Scholar
[Axinn, W., C. Link, and R. Groves. 2011. “Responsive Survey Design, Demographic Data Collection, and Models of Demographic Behavior.” Demography 48(3): 1–23. DOI: https://doi.org/10.1007/s13524-011-0044-1.10.1007/s13524-011-0044-121706256]Search in Google Scholar
[Barber, J.S., Y. Kusunoki, and H.H. Gatny. 2011. “Design and Implementation of an Online Weekly Survey to Study Unintended Pregnancies: Preliminary Results.” Vienna Yearbook of Population Research 9: 327–334. DOI: https://doi.org/10.1553/populationyearbook2011s327.10.1553/populationyearbook2011s327329818822408644]Search in Google Scholar
[Biemer, P.P., de Leeuw, E.D., Eckman, S., Edwards, B., Kreuter, F., Lyberg, L., Tucker, C., and West, B.T. (Eds.). 2017. Total Survey Error in Practice. Hoboken, New Jersey: Wiley.10.1002/9781119041702]Search in Google Scholar
[Biemer, P.P., and D. Trewin. 1997. “A Review of Measurement Error Effects on the Analysis of Survey Data.” In Survey Measurement and Process Quality, edited by L. Lyberg, P. Biemer, M. Collins, E. de Leeuw, C. Dippo, N. Schwarz, and D. Trewin. (pp. 601–632). New York: Wiley.10.1002/9781118490013.ch27]Search in Google Scholar
[Burger, J., K. Perryck, and B. Schouten. 2017. “Robustness of Adaptive Survey Designs to Inaccuracy of Design Parameters.” Journal of Official Statistics 33(3): 687–708. DOI: https://doi.org/10.1515/jos-2017-0032.10.1515/jos-2017-0032]Search in Google Scholar
[Chipman, H.A., E.I. George, and R.E. McCulloch. 2010. “BART: Bayesian Additive Regression Trees.” The Annals of Applied Statistics 4(1): 266–298. DOI: https://doi.org/10.1214/09-AOAS285.10.1214/09-AOAS285]Search in Google Scholar
[Dorie, V., H. Chipman, R. McCulloch, A. Dadgar, R.C. Team, G.U. Draheim, M. Bosmans, C. Tournayre, M. Petch, and R. de Lucena Valle. 2019. “dbarts: Discrete Bayesian Additive Regression Trees Sampler.” Available at: https://CRAN.R-project.org/package=dbarts (accessed May 2020).]Search in Google Scholar
[Durrant, G.B., O. Maslovskaya, and W.F. Smith Peter. 2017. “Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?” Journal of Official Statistics 33(3): 801–833. DOI: https://doi.org/10.1515/jos-2017-0037.10.1515/jos-2017-0037]Search in Google Scholar
[Finamore, J., S. Coffey, and B. Reist. 2013. “National Survey of College Graduates: A Practice-Based Investigation of Adaptive Design.” Annual AAPOR Conference, May 16–19, 2013. Boston, MA, U.S.A.]Search in Google Scholar
[Green, D.P., and H.L. Kern. 2012. “Modeling Heterogeneous Treatment Effects in Survey Experiments with Bayesian Additive Regression Trees.” Public Opinion Quarterly 76(3): 491–511. DOI: https://doi.org/10.1093/poq/nfs036.10.1093/poq/nfs036]Search in Google Scholar
[Groves, R.M. 2006. “Nonresponse Rates and Nonresponse Bias in Household Surveys.” Public Opinion Quarterly 70(5): 646–675. DOI: https://doi.org/10.1093/poq/nfl033.10.1093/poq/nfl033]Search in Google Scholar
[Groves, R.M., and S.G. Heeringa. 2006. “Responsive Design for Household Surveys: Tools for Actively Controlling Survey Errors and Costs.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 169(3): 439–457. DOI: https://doi.org/10.1111/j.1467-985X.2006.00423.x.10.1111/j.1467-985X.2006.00423.x]Search in Google Scholar
[Kern, C., T. Klausch, and F. Kreuter. 2019. “Tree-Based Machine Learning Methods for Survey Research.” Survey Research Methods 13(1): 73–93. DOI: https://doi.org/10.18148/srm/2019.v1i1.7395.]Search in Google Scholar
[Kirgis, N., and J. Lepkowski. 2013. “Design and Management Strategies for Paradata-Driven Responsive Design: Illustrations from the 2006-2010 National Survey of Family Growth.” In Improving Surveys with Paradata: Analytic Uses of Process Information, edited by F. Kreuter: 121–144. Hoboken, NJ: Wiley.10.1002/9781118596869.ch6]Search in Google Scholar
[Kleven, Ø., J. Fosen, B. Lagerstrøm, and L.-C. Zhang. 2010. . “The Use of R-Indicators in Responsive Survey Design–Some Norwegian Experiences.” Q2010 Conference, Helsinki, 3–6 May 2010. Available at: http://hummedia.manchester.ac.uk/institutes/cmist/risq/kleven-2010b.pdf (accessed May 2020)]Search in Google Scholar
[Laflamme, F., and M. Karaganis. 2010. “Implementation of Responsive Collection Design for CATI Surveys at Statistics Canada.” Proceedings of the European Conference on Quality in Official Statistics, Helsinki, Finland, Helsinki, Finland, 3–6 May, 2010. Available at: https://q2010.stat.fi/media/presentations/1_Responsive_design_paper_london_event1_revised.doc.]Search in Google Scholar
[Lewis, T. 2017. “Univariate Tests for Phase Capacity: Tools for Identifying When to Modify a Survey’s Data Collection Protocol.” Journal of Official Statistics 33(3): 601–624. DOI: https://doi.org/10.1515/jos-2017-0029.10.1515/jos-2017-0029]Search in Google Scholar
[Luiten, A., and B. Schouten. 2013. “Tailored Fieldwork Design to Increase Representative Household Survey Response: An Experiment in the Survey of Consumer Satisfaction.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 176(1): 169–189. DOI: https://doi.org/10.1111/j.1467-985X.2012.01080.x.10.1111/j.1467-985X.2012.01080.x]Search in Google Scholar
[Lundquist, P., and C.-E. Särndal. 2013. “Aspects of Responsive Design with Applications to the Swedish Living Conditions Survey.” Journal of Official Statistics 29(4): 557–582. DOI: https://doi.org/10.2478/jos-2013-0040.10.2478/jos-2013-0040]Search in Google Scholar
[Lynn, p. 2016. “Targeted Appeals for Participation in Letters to Panel Survey Members.” Public Opinion Quarterly 80(3): 771–782. DOI: https://doi.org/10.1093/poq/nfw024.10.1093/poq/nfw024]Search in Google Scholar
[Mohl, C., and F. Laflamme. 2007. “Research and Responsive Design Options for Survey Data Collection at Statistics Canada.” Joint Statistical Meetings, Salt Lake City, UT, 29 July–2 August, 2007. Available at: http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000421.pdf (accessed May 2020).]Search in Google Scholar
[Paiva, T., and J.P. Reiter. 2017. “Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables.” Journal of Official Statistics 33(3): 579–599. DOI: https://doi.org/10.1515/jos-2017-0028.10.1515/jos-2017-0028]Search in Google Scholar
[Peytchev, A., R.K. Baxter, and L.R. Carley-Baxter. 2009. “Not All Survey Effort Is Equal: Reduction of Nonresponse Bias and Nonresponse Error.” Public Opinion Quarterly 73(4): 785–806. DOI: https://doi.org/10.1093/poq/nfp037.10.1093/poq/nfp037]Search in Google Scholar
[Peytchev, A., E. Peytcheva, and R.M. Groves. 2010. “Measurement Error, Unit Nonresponse, and Self-Reports of Abortion Experiences.” Public Opinion Quarterly 74(2): 319–327. DOI: https://doi.org/10.1093/poq/nfq002.10.1093/poq/nfq002]Search in Google Scholar
[Plewis, I., and N. Shlomo. 2017. “Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies.” Journal of Official Statistics 33(3): 753–779. DOI: https://doi.org/10.1515/jos-2017-0035.10.1515/jos-2017-0035]Search in Google Scholar
[Rao, R.S., M.E. Glickman, and R.J. Glynn. 2008. “Stopping Rules for Surveys with Multiple Waves of Nonrespondent Follow-Up.” Statistics in Medicine 27(12): 2196–2213. DOI: https://doi.org/10.1002/sim.3063.10.1002/sim.306317886234]Search in Google Scholar
[Rosen, J.A., J. Murphy, A. Peytchev, T. Holder, J. Dever, D. Herget, and D. Pratt. 2014. “Prioritizing Low Propensity Sample Members in a Survey: Implications for Nonresponse Bias.” Survey Practice 7(1). DOI: https://doi.org/10.1.1.686.6795.10.29115/SP-2014-0001]Search in Google Scholar
[Schonlau, M,. and M.P. Couper. 2016. “Semi-Automated Categorization of Open-Ended Questions.” Survey Research Methods 10(2): 143–152. DOI: https://doi.org/10.18148/srm/2016.v10i2.6213.]Search in Google Scholar
[Sparapani, R.A., B.R. Logan, R.E. McCulloch, and P.W. Laud. 2016. “Nonparametric Survival Analysis Using Bayesian Additive Regression Trees (BART).” Statistics in Medicine 35(16): 2741–2753. https://doi.org/DOI:10.1002/sim.6893.10.1002/sim.6893489927226854022]Search in Google Scholar
[Tabuchi, T., F. Laflamme, O. Phillips, M. Karaganis, and A. Villeneuve. 2009. “Responsive Design for the Survey of Labour and Income Dynamics.” Statistics Canada Symposium. October 27–30, 2009. Gatineau, Québec, Canada. Available at: http://oaresource.library.carleton.ca/wcl/2016/20160811/CS11-522-2009-eng.pdf#page=149.]Search in Google Scholar
[Tan, Y.V., C.A. Flannagan, and M.R. Elliott. 2018. “Predicting Human-Driving Behavior to Help Driverless Vehicles Drive: Random Intercept Bayesian Additive Regression Trees.” Statistics and Its Interface 11(4): 557–572. DOI: https://doi.org/10.4310/-SII.2018.v11.n4.a1.]Search in Google Scholar
[Tourangeau, R., J. Michael Brick, S. Lohr, and J. Li. 2017. “Adaptive and Responsive Survey Designs: A Review and Assessment.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 180(1): 203–223. DOI: https://doi.org/10.1111/rssa.12186.10.1111/rssa.12186]Search in Google Scholar
[Wagner, J. 2019. “Estimation of Survey Cost Parameters Using Paradata.” Survey Practice 12(1): 1–10. DOI: https://doi.org/10.29115/SP-2018-003610.29115/SP-2018-0036]Search in Google Scholar
[Wagner, J., and K. Olson. 2018. “An Analysis of Interviewer Travel and Field Outcomes in Two Field Surveys.” Journal of Official Statistics 34(1): 211–237. DOI: https://doi.org/10.1515/jos-2018-0010.10.1515/jos-2018-0010]Search in Google Scholar
[Wagner, J., and T.E. Raghunathan. 2010. “A New Stopping Rule for Surveys.” Statistics in Medicine 29(9): 1014–1024. DOI: https://doi.org/10.1002/sim.3834.10.1002/sim.383420131311]Search in Google Scholar
[Wagner, J., B.T. West, H. Guyer, P. Burton, J. Kelley, M.P. Couper, and W.D. Mosher. 2017. “The Effects of a Mid-Data Collection Change in Financial Incentives on Total Survey Error in the National Survey of Family Growth.” In Total Survey Error in Practice, edited by P.P. Biemer, E. de Leeuw, S. Eckman, B. Edwards, F. Kreuter, L.E. Lyberg, N.C. Tucker, and B.T. West. New York. Wiley.10.1002/9781119041702.ch8]Search in Google Scholar
[West, B.T., and A.G. Blom. 2017. “Explaining Interviewer Effects: A Research Synthesis.” Journal of Survey Statistics and Methodology 5(2): 175–211. DOI: https://doi.org/10.1093/jssam/smw024.10.1093/jssam/smw024]Search in Google Scholar
[West, B.T., J. Wagner, F. Hubbard, and H. Gu. 2015. “The Utility of Alternative Commercial Data Sources for Survey Operations and Estimation: Evidence from the National Survey of Family Growth.” Journal of Survey Statistics and Methodology 3(2): 240–264. DOI: https://doi.org/10.1093/jssam/smv004.10.1093/jssam/smv004]Search in Google Scholar
[West, B.T., J. Wagner, S. Coffey, and M.R. Elliott. 2019. “The Elicitation of Prior Distributions for Bayesian Responsive Survey Design.” Historical Data Analysis versus Literature Review. Available at: https://arxiv.org/ftp/arxiv/papers/1907/1907.06560.pdf.]Search in Google Scholar