Uneingeschränkter Zugang

Effect of Salicylic Acid in Inhibiting Fungal Contamination in in vitro Cultures of Date Palm (Phoenix dactylifera L.) and Enhancing Embryogenesis and Plantlet Development

  
25. Dez. 2024

Zitieren
COVER HERUNTERLADEN

Abass M.H. 2013. Microbial contaminants of date palm (Phoenix dactylifera L.) in Iraqi tissue culture laboratories. Emirates Journal of Food Agriculture 25(11): 875–882. DOI: 10.9755/ejfa.v25i11.15351.Search in Google Scholar

Al-Mayahi A.M.W. 2016. Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera L.) cv. ‘Nersy’. Australian Journal of Crop Science 10(7): 969–976. DOI: 10.21475/ajcs.2016.10.07.p7640.Search in Google Scholar

Al-Mussawii M.A.Y. 2010. The source of bacterial contamination of date palm (Phoenix dactylifera L.) grown invitro. Basrah Journal for Date Palm Research 9(2): 132–146. [in Arabic with English abstract]Search in Google Scholar

Alutbi S.D., Al-Saadi S.A.A.M., Madhi Z.J. 2017. The effect of salicylic acid on the growth and microtuberization of potato (Solanum tuberosum L.) cv. Arizona propagated in vitro. Journal of Biology, Agriculture and Healthcare 7(2): 64–70.Search in Google Scholar

Amin A.A., Rashad El-Sh.M., Gharib F.A.E. 2008. Changes in morphological, physiological and reproductive characters of wheat plants as affected by foliar application with salicylic acid and ascorbic acid. Australian Journal of Basic and Applied Sciences 2(2): 252–261.Search in Google Scholar

Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85–100. DOI: 10.1016/0098-8472(92)90034-y.Search in Google Scholar

Barnett H.L., Hunter B.B. 1972. Illustrated Genera of Imperfect Fungi, 3rd ed. Burgess Publishing, USA, 241 p.Search in Google Scholar

Chen L., Zhao X., Wu J., He Y., Yang H. 2020. Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR. Food Research International 128; 108796. DOI: 10.1016/j.foodres.2019.108796.Search in Google Scholar

Choi Y.E., Katsumi M., Sano H. 2001. Triiodobenzoic acid, an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryonic shoot/root development in Eleutherococcus senticosus. Plant Science 160(6): 1183–1190. DOI: 10.1016/s0168-9452(01)00357-0.Search in Google Scholar

Cowan M.M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12(4): 564–582. DOI: 10.1128/cmr.12.4.564.Search in Google Scholar

De Vleesschauwer D., Gheysen G., Höfte M. 2013. Hormone defense networking in rice: tales from a different world. Trends in Plant Science 18(10): 555–565. DOI: 10.1016/j.tplants.2013.07.002.Search in Google Scholar

Ding Y., Sun T., Ao K., Peng Y., Zhang Y., Li X., Zhang Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173(6): 1454–1467. DOI: 10.1016/j.cell.2018.03.044.Search in Google Scholar

Domsch K.H., Gams W., Anderson T.-H. 1993. Compendium of Soil Fungi, vol. 1. IHW-Verlag, Germany. El-Taher A.M., Abd El-Raouf H.S., Osman N.A., Azoz S.N., Omar M.A. et al. 2022. Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) plants. Plants 11(1); 115; 15 p. DOI: 10.3390/plants11010115.Search in Google Scholar

Guo B., Liu C., Liang Y., Li N., Fu Q. 2019. Salicylic acid signals plant defense against cadmium toxicity. International Journal of Molecular Sciences 20(12); 2960; 19 p. DOI: 10.3390/ijms20122960.Search in Google Scholar

Jassim N.S., Ahmed A.N. 2024. The isolation and molecular identification of the main fungus caused leaf spots on date palms (Phoenix dactylifera L.). Archives of Phytopathology and Plant Protection 57(7): 542–554. DOI: 10.1080/03235408.2024.2375038.Search in Google Scholar

Jassim N.S., Salih A.M., Ati M.A. 2021. Evaluating the efficiency of plants essential oils against common fungal contamination affecting tissue culture of date palms (Phoenix dactylifera L.) by in vitro culture. Research Journal of Chemistry and Environment 25(6): 40–45.Search in Google Scholar

Jazi S.A., Yazdi H.L., Ranjbar M. 2011. Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. Okapi. Iranian Journal of Plant Physiology 1(3): 177–185.Search in Google Scholar

Jesus C., Meijón M., Monteiro P., Correia B., Amaral J., Escandón M. et al. 2015. Salicylic acid application modulates physiological and hormonal changes in Eucalyptus globulus under water deficit. Environmental and Experimental Botany 118: 56–66. DOI: 10.1016/j.envexpbot.2015.06.004.Search in Google Scholar

Kamboj J.S., Blake P.S., Quinlan J.D., Baker D.A. 1999. Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regulation 28(3): 199–205. DOI: 10.1023/a:1006292309765.Search in Google Scholar

Karuppaiah P., Rameshkumar S., Shah K., Marimuthu R. 2003. Effect of antitranspirants on growth, photo-synthetic rate and yield characters of brinjal. Indian Journal of Plant Physiology 8(2): 189–192.Search in Google Scholar

Kelen M., Çubuk Demiralay E., Şen S., Özkan G. 2004. Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri × Vitis rupestris) and rose oil (Rosa damascena Mill.) by reversed phase liquid chromatography. Turkish Journal of Chemistry 28(5): 603–610.Search in Google Scholar

Klessig D.F., Tian M., Choi H.W. 2016. Multiple targets of salicylic acid and its derivatives in plants and animals. Frontiers in Immunology 7; 206; 10 p. DOI: 10.3389/fimmu.2016.00206.Search in Google Scholar

Leifert C., Cassells A.C. 2001. Microbial hazards in plant tissue and cell cultures. In vitro Cellular and Developmental Biology – Plant 37(2): 133–138. DOI: 10.1079/ivp2000129.Search in Google Scholar

Luo J.-P., Jiang S.-T., Pan L.-J. 2001. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pill.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Science 161(1): 125–132. DOI: 10.1016/s0168-9452(01)00401-0.Search in Google Scholar

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.Search in Google Scholar

Nic-Can G.I., Loyola-Vargas V.M. 2016. The role of the auxins during somatic embryogenesis. In: Loyola-Vargas V.M., Ochoa-Alejo N. (Eds.), Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, pp. 171–182. DOI: 10.1007/978-3-319-33705-0_10.Search in Google Scholar

Qi P.-F., Johnston A., Balcerzak M., Rocheleau H., Harris L.J., Long X.-Y. et al. 2012. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biology 116(3): 413–426. DOI: 10.1016/j.funbio.2012.01.001.Search in Google Scholar

Quiroz-Figueroa F., Méndez-Zeel M., Larqué-Saavedra A., Loyola-Vargas V.M. 2001. Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Reports 20(8): 679–684. DOI: 10.1007/s002990100386.Search in Google Scholar

Radojičić A., Li X., Zhang Y. 2018. Salicylic acid: a double-edged sword for programed cell death in plants. Frontiers in Plant Science 9; 1133; 5 p. DOI: 10.3389/fpls.2018.01133.Search in Google Scholar

da Rocha Neto A.C., Maraschin M., Di Piero R.M. 2015. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International Journal of Food and Microbiology 215: 64–70. DOI: 10.1016/j.ijfoodmicro.2015.08.018.Search in Google Scholar

Sanaa Z.A.M., Ibrahim S.L., Sharaf E.H.A. 2001. The effect α-naphthalene acetic acid (NAA), salicylic acid (SA) and their combinations on growth, fruit setting, yield and some correlated components in dry bean (Phaseolus vulgaris L.). Annals of Agricultural Sciences 46(2): 451–463.Search in Google Scholar

Santner A., Calderon-Villalobos L.I.A., Estelle M. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5(5): 301–307. DOI: 10.1038/nchembio.165.Search in Google Scholar

Sanzani S.M., Schena L., Ippolito A. 2014. Effectiveness of phenolic compounds against citrus green mould. Molecules 19(8): 12500–12508. DOI: 10.3390/molecules190812500.Search in Google Scholar

Singh B., Usha K. 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation 39(2): 137–141. DOI: 10.1023/a:1022556103536.Search in Google Scholar

Singh J., Tripathi N.N. 1999. Inhibition of storage fungi of blackgram (Vigna mungo L.) by some essential oils. Flavor and Fragrance Journal 14(1): 1–4. DOI: 10.1002/(sici)1099-1026(199901/02)14:1<1::aidffj735>3.0.co;2-r.Search in Google Scholar

Su Y.H., Zhang X.S. 2009. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signaling and Behavior 4(7): 574–576. DOI: 10.4161/psb.4.7.8730.Search in Google Scholar

Suhaib M., Ahmad I., Munir M., Iqbal M.B., Abuzar M.K., Ali S. 2018. Salicylic acid induced physiological and ionic efficiency in wheat under salt stress. Pakistan Journal of Agricultural Research 31(1): 79–85. DOI: 10.17582/journal.pjar/2018/31.1.79.85.Search in Google Scholar

Turkyilmaz B. 2012. Effects of salicylic and gibberellic acids on wheat (Triticum aestivum L.) under salinity stress. Bangladesh Journal of Botany 41(1): 29–34. DOI: 10.3329/bjb.v41i1.11079.Search in Google Scholar

Wu H.-S., Raza W., Fan J.-Q., Sun Y.-G., Bao W., Liu D.-Y. et al. 2008. Antibiotic effect of exogenously applied salicylic acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74(1): 45–50. DOI: 10.1016/j.chemosphere.2008.09.027.Search in Google Scholar

Yu F., Gu Q., Yun Y., Yin Y., Xu J.-R., Shim W.B., Ma Z. 2014. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytologist 203(1): 219–232. DOI: 10.1111/nph.12776.Search in Google Scholar

Zamani E., Sanjarian F., Mohammadi-Goltapeh E., Safaie N. 2019. Effects of salicylic acid on the growth and pathogenicity of Zymoseptoria tritici. Biological Journal of Microorganism 7(28): 53–62. DOI: 10.22108/bjm.2018.103408.1046.Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Botanik, Ökologie, Biologie, andere