[
Abbott, B.W., Bishop, K., Zarnetske, J.P., Minaudo, C., Chapin III, F.S., Krause, S., Hannah, D.M., Conner, L., Ellison, D., Godsey, S.E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R.J., Hampton, T., Gu, S., Buhman, M., Sayedi, S.S., Ursache, O., Chapin, M., Henderson, K.D., Pinay, G., 2019. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci., 12, 533–540. https://doi.org/10.1038/s41561-019-0374-y
]Search in Google Scholar
[
Blaškovičová, L., Jenéiová, K., Kotríková, K., Lovásová, Ľ., Melová, K., Liová, S., 2023. Challenges in selecting the new reference period for long-term hydrological characteristics in Slovakia. Acta Hydrologica Slovaca, 24, 2, 232–241. https://doi.org/10.31577/ahs-2023-0024.02.0026
]Search in Google Scholar
[
Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M., Teutschbein, C., Wendt, D., Akstinas, V., Bakke, S., Barker, L., Bartošová, L., Briede, A., Cammalleri, C., Cindric, K., De Stefano, L., Fendekova, M., Finger, D., Huysmans, M., Ivanov, M., Jaagus, J., Živković, N., 2022. Lessons from the 2018-2019 European droughts: a collective need for unifying drought risk management. Nat. Hazards Earth Sys. Sci., 22, 2201–2217. https://doi.org/10.5194/nhess-22-2201-2022
]Search in Google Scholar
[
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B., et al., 2017. Changing climate shifts timing of European floods. Science, 357, 6351, 588–590. https://doi.org/10.1126/science.aan2506
]Search in Google Scholar
[
Blöschl, G., Hall, J., Viglione, A., Perdigão, R.A., Parajka, J., Merz, B., et al., 2019. Changing climate both increases and decreases European river floods. Nature, 573, 7772, 108–111. https://doi.org/10.1038/s41586-019-1495-6
]Search in Google Scholar
[
Blöschl, G., 2022. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci., 26, 5015–5033. https://doi.org/10.5194/hess-26-5015-2022
]Search in Google Scholar
[
Burn, D.H., 1994. Hydrological effects of climatic change in west-central Canada. Journal of Hydrology, 160, 53–70. https://doi.org/10.1016/0022-1694(94)90033-7
]Search in Google Scholar
[
Burn, D.H., Elnur, M.A.H., 2002. Detection of hydrologic trends and variability. Journal of Hydrology, 255, 107–122. https://doi.org/10.1016/S0022-1694(01)00514-5
]Search in Google Scholar
[
Danáčová, Z., Blaškovičová, L., Lovásová, Ľ., Šimor, V., Škoda, P., 2015. Hydrologic extremes: modelling and forecasting, 16, TC 1, 13–22. (In Slovak.)
]Search in Google Scholar
[
Dey, P., Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. J. Hydrol., 548, 278–290. https://doi.org/10.1016/j.jhydrol.2017.03.014
]Search in Google Scholar
[
Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc., New York.
]Search in Google Scholar
[
Hamed, K.H., 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349, 3–4, 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009
]Search in Google Scholar
[
Hammond, M.J., Chen, A.S., Djordjević, S., Butler, D., Mark, O., 2015. Urban flood impact assessment: A state-of-the-art review. Urban Water Journal, 12, 1, 14–29. https://doi.org/10.1080/1573062X.2013.857421
]Search in Google Scholar
[
Hirsch, R.M., Slack, J.R., Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 1, 107–121. https://doi.org/10.1029/WR018i001p00107
]Search in Google Scholar
[
Hirsch, R.M., Slack, J.R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20, 6, 727–732. https://doi.org/10.1029/WR020i006p00727
]Search in Google Scholar
[
Holko, L., Danko, M., Sleziak, P., Jančo, M., Liová, S., 2024. Characteristics of runoff events in the Upper Váh River catchment in the warm period of year. Acta Hydrologica Slovaca, 25, 1, 25–31. https://doi.org/10.31577/ahs-2024-0025.01.0003 IPCC, 2021. Intergovernmental Panel on Climate Change
]Search in Google Scholar
[
(IPCC). (2021). Summary for policymakers. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., et al. (Eds.): Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
]Search in Google Scholar
[
Jeneiova, K., Poorova, J., Danacova, Z., Melova, K., Kotrikova, K., 2023. Analysis of changes in long-term mean annual discharge in Slovakia. In: EGU General Assembly Conference Abstracts, EGU-5669. https://doi.org/10.5194/egusphere-egu23-5669
]Search in Google Scholar
[
Kendall, M.G., 1975. Rank Correlation Methods. 4th Ed. Charles Griffin, London.
]Search in Google Scholar
[
Kohnová, S., Rončák, P., Hlavčová, K., Szolgay, J., Rutkowska, A., 2019. Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia. Meteorology Hydrology and Water Management. Research and Operational Applications, 7. https://doi.org/10.26491/mhwm/97254
]Search in Google Scholar
[
Kundzewicz, Z.W., Graczyk, D., Maurer, T., Pińskwar, I., Radziejewski, M., Svensson, C., Szwed, M., 2005. Trend detection in river flow series: 1. Annual maximum flow/Détection de tendance dans des séries de débit fluvial: 1. Débit maximum annuel. Hydrological Sciences Journal, 50, 5. 50. 1–810. https://doi.org/10.1623/hysj.2005.50.5.797.
]Search in Google Scholar
[
Leščešen, I., Basarin, B., Pavić, D., Mudelsee, M., Pekarova, P., Mesaroš, M., 2024. Are extreme floods on the Danube River becoming more frequent? A case study of Bratislava station. Journal of Water and Climate Change, 15, 3, 1300–1312. https://doi.org/10.2166/wcc.2024.587
]Search in Google Scholar
[
Li, B., Rodell, M., 2023. How have hydrological extremes changed over the past 20 years? Journal of Climate, 36, 24, 8581–8599. https://doi.org/10.1175/JCLI-D-23-0199.1
]Search in Google Scholar
[
Luo, S., Wang, Q., Xu, Y., Lin, Z., Yu, Z., 2023. Identifying changes in flood characteristics and their causes from an event-based perspective in the Central Taihu Basin. Science of the Total Environment, 905, 167131. https://doi.org/10.1016/j.scitotenv.2023.167131.
]Search in Google Scholar
[
Mann, H.B., 1945. Non-parametric tests against trend. Econometrica, 13, 245–259. https://doi.org/10.2307/1907187
]Search in Google Scholar
[
Min, R., Gu, X., Guan, Y., Zhang, X., 2023. Increasing likelihood of global compound hot-dry extremes from temperature and runoff during the past 120 years. Journal of Hydrology, 621, 129553. https://doi.org/10.1016/j.jhydrol.2023.129553
]Search in Google Scholar
[
Nasreen, S., Součková, M., Vargas Godoy, M.R., Singh, U., Markonis, Y., Kumar, R., Rakovec, O., Hanel, M., 2021. A 500-year annual runoff reconstruction for 14 selected European catchments. Earth System Science Data, 14, 9, 4035–4056. https://doi.org/10.5194/essd-14-4035-2022
]Search in Google Scholar
[
Oki, T., Valeo, C., Heal, K. (Eds.), 2006. HYDROLOGY 2020 An Integrating Science to Meet World Water Challenges. IAHS Publ. vol. 300, 190 p.
]Search in Google Scholar
[
Parajka, J., Kohnová, S., Merz, R., Szolgay, J., Hlavčová K., Blöschl, G., 2009. Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria / Analyse comparative de la saisonnalité de caractéristiques hydrologiques en Slovaquie et en Autriche. Hydrological Sciences Journal, 54, 3, 456–473. https://doi.org/10.1623/hysj.54.3.456
]Search in Google Scholar
[
Pardé, M., 1947. Le Régime des Eaux au XXIe Siècle (The Water Regime in the 21st Century). Annales de Géographie.
]Search in Google Scholar
[
Pekárová, P., Miklánek, P. (Eds.), 2019. Flood regime of rivers in the Danube River basin. Follow-up volume IX of the Regional Co-operation of the Danube Countries in IHP UNESCO. IH SAS, Bratislava, 215 p. + 527 p. app. https://doi.org/10.31577/2019.9788089139460
]Search in Google Scholar
[
Pekárová, P., Bajtek, Z., Pekár, J., Výleta, R., Bonacci, O., Miklánek, P., Belz, J., Gorbachova, L., 2023. Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios. J. Hydrol. Hydromech., 71, 4, 382–398, https://doi.org/10.2478/johh-2023-0028
]Search in Google Scholar
[
Petrovič, P., 2006. Basin – Wide Water Balance in the Danube Basin. The Danube and its Basin –Hydrological Monograph Follow-up Volume VIII.
]Search in Google Scholar
[
Poórová, J., Jeneiová, K., Blaškovičová, L., Danáčová, Z., Kotríková, K., Melová, K., Paľušová, Z., 2023. Effects of the time period length on the determination of long-term mean annual discharge. Hydrology, 10, 4, 88. https://doi.org/10.3390/hydrology10040088
]Search in Google Scholar
[
Rottler, E., Francke, T., Bürger, G., Bronstert, A., 2020. Long-term changes in Central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, Hydrol. Earth Syst. Sci., 24, 1721–1740. https://doi.org/10.5194/hess-24-1721-2020
]Search in Google Scholar
[
Sabová, Z., Kohnová, S., 2023. On future changes in the long-term seasonal discharges in selected basins of Slovakia. Acta Hydro-logica Slovaca, 24, 1, 73–81. https://doi.org/10.31577/ahs-2023-0024.01.0009
]Search in Google Scholar
[
Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc., 63, 1379–1389.
]Search in Google Scholar
[
Sleziak, P., Výleta, R., Hlavčová, K., Danáčová, M., Aleksić, M., Szolgay, J., Kohnová, S., 2021. A hydrological modeling approach for assessing the impacts of climate change on runoff regimes in Slovakia. Water, 13, 23, 3358. https://doi.org/10.3390/w13233358
]Search in Google Scholar
[
Snizhko, S., Bertola, M., Ovcharuk, V., Shevchenko, O., Didovets, I., Blöschl, G., 2023. Climate impact on flood changes–an Austrian-Ukrainian comparison. Journal of Hydrology and Hydromechanics, 71, 3, 271–282. https://doi.org/10.2478/johh-2023-0017
]Search in Google Scholar
[
Spearman, C., 1904. The proof and measurement of association between two things. The American Journal of Psychology, 15, 1, 72–101. https://doi.org/10.2307/1412159
]Search in Google Scholar
[
Szolgay, J., Hlavčová, K., Lapin, M., Parajka, J., Kohnová, S., 2007. The impact of climate change on the runoff regime in Slovakia. Key Publishing, 160 p. (In Slovak.)
]Search in Google Scholar
[
Šipikalová, H., Škoda, P., Podolinská, J., Liová, S., 2015. Assessment of the reference period 1961-2000 in determining hydrological characteristics. In: Proc. Manažment povodí a povodňových rizík 2015 a Hydrologické dni 2015. (In Slovak.)
]Search in Google Scholar
[
Škoda, P., Blaškovičová, L., Melová, K., 2016. Evaluation of the hydrological year 2015. Vodohospodársky spravodajca, 59, 3–4, 14–16. (In Slovak.)
]Search in Google Scholar
[
Tilloy, A., Paprotny, D., Mentaschi, L., Treu, S., Lange, S., Bianchi, A., et al., 2023. Long-term trends in European extreme floods from 1950 to 2020. In: EGU General Assembly Conference Abstracts (pp. EGU-5335). https://doi.org/10.5194/egusphereegu23-5335
]Search in Google Scholar
[
Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014. Global warming and changes in drought. Nature Climate Change, 4, 1, 17–22. https://doi.org/10.1038/nclimate2067
]Search in Google Scholar
[
Yu, J.R., Zou, L., Xia, J., et al., 2023. Investigating the spatial-temporal changes of flood events across the Yangtze River Basin, China: identification, spatial heterogeneity, and dominant impact factors. J. Hydrol., 621, 129503. https://doi.org/10.1016/j.jhydrol.2023.129503
]Search in Google Scholar
[
Yue, S., Pilon, P., Cavadias, G., 2002. Power of Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259, 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7
]Search in Google Scholar
[
Yue, S., Pilon, P., Phinney, B., 2003. Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol. Sci. J., 48, 1, 51–64. https://doi.org/10.1623/hysj.48.1.51.43478
]Search in Google Scholar