Uneingeschränkter Zugang

Testing sensitivity of BILAN and GR2M models to climate conditions in the Gambia River Basin


Zitieren

Anctil, F., Perrin, C., Andréassian, V., 2004. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ. Model. Softw., 19, 357–368. Search in Google Scholar

Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., Valery, A., 2009. Crash tests for a standardized evaluation of hydrological models. Hydrol. Earth Syst. Sci., 13, 1757–1764. Search in Google Scholar

Berthet, L., Bourgin, F., Perrin, C., Viatgé, J., Marty, R., Piotte, O., 2020. A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context. Hydrol. Earth Syst. Sci., 24, 2017–2041. Search in Google Scholar

Beven, K., 2018. Environmental Modelling: An Uncertain Future? CRC Press. Search in Google Scholar

Bodian, A., Dezetter, A., Diop, L., Deme, A., Djaman, K., Diop, A., 2018. Future climate change impacts on streamflows of two main West Africa river basins: Senegal and Gambia. Hydrology, 5, 3, 22–35. Search in Google Scholar

Brigode, P., Oudin, L., Perrin, C., 2013. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol., 476, 410–425. Search in Google Scholar

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrickx, F., 2012. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour. Res., 48, 2, W02509. Search in Google Scholar

Degeorges, A., Reilly, B.K., 2007. Eco-politics of dams on the Gambia river. Int. J. Water Resour. Dev., 23, 641–657. Search in Google Scholar

Flores, N., Rodríguez, R., Yépez, S., Osores, V., Rau, P., Rivera, D., Balocchi, F., 2021. Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in South-Central Chile. Water, 13, 3191. Search in Google Scholar

Hanel, M., Vizina, A., MácA, P., Pavlásek, J., 2012. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. J. Hydrol. Hydromech., 60, 152–161. Search in Google Scholar

Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264–277. Search in Google Scholar

Kodja, D.J., Akognongbé, A.J.S., Amoussou, E., Mahé, G., Vissin, E.W., Paturel, J.-E., Houndénou, C., 2020. Calibration of the hydrological model GR4J from potential evapotranspiration estimates by the Penman-Monteith and Oudin methods in the Ouémé watershed (West Africa). In: Proc. Hydrological Processes and Water Security in a Changing World - Hydrological Processes and Water Security in a Changing World, Beijing, China, 6–9 November 2018. Copernicus GmbH, pp. 163–169. Search in Google Scholar

Merz, R., Parajka, J., Blöschl, G., 2011. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res., 47, W02531. Search in Google Scholar

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885–900. Search in Google Scholar

Mouelhi, S., Michel, C., Perrin, C., Andréassian, V., 2006. Stepwise development of a two-parameter monthly water balance model. J. Hydrol., 318, 200–214. Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models Part I – A discussion of principles. Journal of Hydrology, 10, 3, 282–290. Search in Google Scholar

Oudin, L., Moulin, L., Bendjoudi, H., Ribstein, P., 2010. Estimation de l’évapotranspiration potentielle sans données journalières régulières: Erreurs possibles et impact sur les simulations de bilan en eau. Hydrol. Sci. J., 55, 209–222. Search in Google Scholar

Refsgaard, J.C., Madsen, H., 2013. A framework for testing the ability of models to project climate change and its impacts. Clim. Change, 122, 271–282. Search in Google Scholar

Roudier, P., Ducharne, A., Feyen, L., 2014. Climate change impacts on runoff in West Africa: A review. Hydrology and Earth System Sciences, 18, 7, 2789–2801. Search in Google Scholar

Seibert, J., 2003. Reliability of model predictions outside calibration conditions. Hydrology Research, 34, 477–492. Search in Google Scholar

Sleziak, P., Szolgay, J., Hlavčová. K., Duethmann, D., Parajka, J., Danko, M., 2018. Factors controlling alterations in the performance of a runoff model in changing climate conditions. J. Hydrol. Hydromech., 66, 2018, 4, 381–392. Search in Google Scholar

Vaze, J., Post, D.A., Chiew, F.H.S., Perraud, J.M., Viney, N.R., Teng, J., 2010. Climate non-stationarity - Validity of calibrated rainfall-runoff models for use in climate change studies. J. Hydrol., 394, 447–457. Search in Google Scholar

Vizina, A., Horáček, S., Hanel, M., 2015. Nové možnosti modelu Bilan. Vodohospodářské Technicko-Ekonomické Informace, 57, 7–10. Search in Google Scholar

Vormoor, K., Heistermann, M., Bronstert, A., Lawrence, D., 2018. Hydrological model parameter (in)stability –“crash testing” the HBV model under contrasting flood seasonality conditions. Hydrol. Sci. J., 63, 991–1007. Search in Google Scholar

Wilby, R.L., 2005. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process., 19, 3201–3219. Search in Google Scholar

Yapo, P.O., Gupta, H.V., Sorooshian, S., 1996. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol., 181, 23–48. Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere