Zitieren

Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in dam-break flows: water and sediment layers. In: Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2010”, pp. 533–540. Search in Google Scholar

An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3, 328–343. Search in Google Scholar

Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M., Buccino, M., 2021. Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J. Hydrol., 594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645 Search in Google Scholar

Baklanov, A., 2007. Environmental risk and assessment modelling – scientific needs and expected advancements. In: Ebel, A., Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44. Search in Google Scholar

Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013. Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. Math. Probl. Eng., 928309. https://doi.org/10.1155/2013/928309 Search in Google Scholar

Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 130, 7, 689–703. Search in Google Scholar

Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255, 20210339. https://doi.org/10.1098/rspa.2021.0339 Search in Google Scholar

Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan, S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow dynamics in an open channel with double-layered vegetation. Model. Earth Syst. Environ., 9, 1, 543–555. Search in Google Scholar

Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12. Search in Google Scholar

Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment particles in the presence of bed forms under decelerating and accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102. Search in Google Scholar

Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019. Numerical simulation of air entrainment on stepped spillways. In: E-proceedings of the 38th IAHR World Congress (pp. 1494). September 1–6, 2019, Panama City, Panama. DOI: 10.3850/38WC092019-0755 Search in Google Scholar

Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science, Inc. Search in Google Scholar

Fraccarollo, L., Capart, H., 2002. Riemann wave description of erosional dam-break flows. J. Fluid Mech., 461, 183–228. Search in Google Scholar

Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical investigation of silted-up dam-break flow with different silted-up sediment heights. Water Supply, 23, 2, 599–614. Search in Google Scholar

Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. J. Hydrol. Hydromech., 66, 1, 107–120. Search in Google Scholar

Heller, V., 2011. Scale effects in physical hydraulic engineering models. J. Hydraul. Res., 49, 3, 293–306. Search in Google Scholar

Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free surface. Flow Science, Inc. Search in Google Scholar

Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201–225. Search in Google Scholar

Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int. J. Multiphase Flow, 109, 191–206. Search in Google Scholar

Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam break over a wet bed. J. Hydraul. Res., 48, 2, 238–249. Search in Google Scholar

Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A., Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow dynamics over a stepped channel with vegetation. J. Hydrol., 613, 128395. https://doi.org/10.1016/j.jhydrol.2022.128395 Search in Google Scholar

Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019. A comprehensive study on dam-break flow over dry and wet beds. Ocean Eng., 188, 106279. https://doi.org/10.1016/j.oceaneng.2019.106279 Search in Google Scholar

Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi, S., Di Francesco, S., 2023. Study of dam-break flow over a vegetated channel with and without a drop. Water Resour. Manage., 37, 5, 2107–2123. Search in Google Scholar

Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M., Shahedi, K., Binns, A., 2021. A laboratory investigation of bed-load transport of gravel sediments under dam break flow. Int. J. Sediment Res., 36, 2, 229–234. Search in Google Scholar

Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy simulation of dam‐break‐driven swash on a rough‐planar beach. J. Geophys. Res.: Oceans, 122, 2, 1274–1296. Search in Google Scholar

Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol., 432, 145–153. Search in Google Scholar

Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76. Search in Google Scholar

Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break wave propagation over a cohesionless erodible bed. In: Proc. 30rd IAHR Congress, 100, 261–268. Search in Google Scholar

Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659. Search in Google Scholar

Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng., 178, 442–462. Search in Google Scholar

Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching. Landslides, 19, 12, 2925–2949. Search in Google Scholar

Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation of silted-up dam-break flow striking a rigid structure. Ocean Eng., 261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042 Search in Google Scholar

Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR. Search in Google Scholar

Nielsen, P., 1984. Field measurements of time-averaged suspended sediment concentrations under waves. Coastal Eng., 8, 1, 51–72. Search in Google Scholar

Nielsen, P., 2018. Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup. Coastal Eng., 138, 126–131. Search in Google Scholar

Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019. Analytical solution to the stability of gravity-driven stratified flow of two liquids over an inclined plane. In: 24th French Mechanics Congress in Brest. Brest, p. 244178. Search in Google Scholar

Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4, 43577-1. https://doi.org/10.1515/arh-2008-0012 Search in Google Scholar

Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the effect of vegetation on dam break flood waves. J. Hydrol. Hydromech., 68, 3, 231–241. Search in Google Scholar

Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bed-material gradation on clear water scour at single and group of piles. J. Hydrol. Hydromech., 70, 1, 114–127. Search in Google Scholar

Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical modeling of local scour of non-uniform graded sediment for two arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614. Search in Google Scholar

Parambath, A., 2010. Impact of tsunamis on near shore wind power units. Master’s Thesis. Texas A&M University. Available electronically from https://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8919 Search in Google Scholar

Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A., 2021. Hydrodynamics and sediment transport under a dam-break-driven swash: An experimental study. Coastal Eng., 170, 103986. https://doi.org/10.1016/j.coastaleng.2021.103986 Search in Google Scholar

Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H., Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis and hydraulic design of bridge at Mashan on river Kunhar. Arch. Hydroengineering Environ. Mech., 69, 1, 1–12. Search in Google Scholar

Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In German.) Search in Google Scholar

Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91, 3, 99–164. Search in Google Scholar

Soulsby, R.L., 1997. Dynamics of marine sands: a manual for practical applications. Oceanogr. Lit. Rev., 9, 44, 947. Search in Google Scholar

Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden dam-break. J. Fluid Mech., 731, 579–614. Search in Google Scholar

Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport. J. Hydraul. Eng., 110, 10, 1431–1456. Search in Google Scholar

Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M., 2020. Experimental study and numerical verification of silted-up dam break. J. Hydrol., 590, 125267. https://doi.org/10.1016/j.jhydrol.2020.125267 Search in Google Scholar

Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume model for sediment transport. J. Hydraul. Res., 46, 1, 87–98. Search in Google Scholar

Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of dam-break wave propagation over wet beds with a sediment layer. Ocean Eng., 281, 115035. https://doi.org/10.1016/j.oceaneng.2023.115035 Search in Google Scholar

Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study on characteristics of dam-break wave. Ocean Eng., 159, 358–371. Search in Google Scholar

Yao, G.F., 2004. Development of new pressure-velocity solvers in FLOW-3D. Flow Science, Inc., USA. Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere