Uneingeschränkter Zugang

Inverse task of pollution spreading – Localization of source in extensive open channel network structure


Zitieren

Alifanov, O.M., Artyukhin, E.A., 1975. Regularized numerical solution of nonlinear inverse heat-conduction problem. Journal of Engineering Physics, 29, 1, 934–938. https://doi.org/10.1007/BF00860643/METRICSSearch in Google Scholar

Almikaeel, W., Čubanová, L., Šoltész, A., 2022. Hydrological drought forecasting using machine learning – Gidra River case study. Water, 14, 3, 387. https://doi.org/10.3390/W14030387Search in Google Scholar

Andrle, M., El Badia, A., 2012. Identification of multiple moving pollution sources in surface waters or atmospheric media with boundary observations. Inverse Problems, 28, 7. https://doi.org/10.1088/0266-5611/28/7/075009Search in Google Scholar

Arifjanov, A., Samiev, L.N., Abdulkhaev, Z., Abduraimova, D., Yusupov, S., Kaletová, T., 2022. Model of urban groundwater level management in drainage systems. Acta Hydrologica Slovaca, 23, 2, 172–179. https://doi.org/10.31577/ahs-2022-0023.02.0019Search in Google Scholar

Bagtzoglou, A.C., Atmadja, J., 2003. Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery. Water Resources Research, 39, 2, 1–14. https://doi.org/10.1029/2001WR001021Search in Google Scholar

Banik, B.K., Di Cristo, C., Leopardi, A., 2014. SWMM5 Toolkit Development for Pollution Source Identification in Sewer Systems. Procedia Engineering, 89, 750–757. https://doi.org/10.1016/j.proeng.2014.11.503Search in Google Scholar

Banik, B.K., Alfonso, L., Torres, A.S., Mynett, A., Di Cristo, C., Leopardi, A., 2015a. Optimal placement of water quality monitoring stations in sewer systems: An information theory approach. Procedia Engineering, 119, 1, 1308–1317. https://doi.org/10.1016/j.proeng.2015.08.956Search in Google Scholar

Banik, B.K., Di Cristo, C., Leopardi, A., 2015b. A pre-screening procedure for pollution source identification in sewer systems. Procedia Engineering, 119, 1, 360–369. https://doi.org/10.1016/j.proeng.2015.08.896Search in Google Scholar

Banik, B.K., Alfonso, L., Di Cristo, C., Leopardi, A., 2017. Greedy algorithms for sensor location in sewer systems. Water, 9, 11, 856. https://doi.org/10.3390/w9110856Search in Google Scholar

Beck, J.V., Wolf, H., 1965. Nonlinear inverse heat conduction problem. In: Proc. ASME/AIChE Heat Transfer Conference and Exhibit, ASME Paper 65-HT-40, Los Angeles.Search in Google Scholar

Beck, J.V., Blackwell, B., Clair Jr, C.R.S., 1985. Inverse Heat Conduction: Ill-Posed Problems. John Wiley & Sons. Bencala, K.E., Walters, R.A., 1983. Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19, 3, 718–724. https://doi.org/10.1029/WR019i003p00718Search in Google Scholar

Brunner, G.W., Bonner, V.R., 1994. HEC River Analysis System (HEC-RAS). Hydrologic Engineering Center. https://erdc-library.erdc.dren.mil/jspui/handle/11681/32541Search in Google Scholar

Buras, M.P., Solano Donado, F., 2021. Identifying and estimating the location of sources of industrial pollution in the sewage network. Sensors, 21, 10, 3426. https://doi.org/10.3390/s21103426Search in Google Scholar

Busby, H.R., Trujillo, D.M., 1985. Numerical solution to a two-dimensional inverse heat conduction problem. International Journal for Numerical Methods in Engineering, 21, 2, 349–359. https://doi.org/10.1002/NME.1620210211Search in Google Scholar

Butera, I., Tanda, M.G., Zanini, A., 2013. Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27, 5, 1269–1280. https://doi.org/10.1007/S00477-012-0662-1Search in Google Scholar

Cannon, J.R., 1968. Determination of an unknown heat source from overspecified boundary data. SIAM Journal on Numerical Analysis, 5, 2, 275–286.Search in Google Scholar

Capel, P.D., Giger, W., Reichert, P., Wanner, O., 1988. Accidental input of pesticides into the Rhine River. Environmental Science & Technology, 22, 9, 992–997.Search in Google Scholar

Chachuła, K., Słojewski, T.M., Nowak, R., 2022. Multisensor data fusion for localization of pollution sources in wastewater networks. Sensors, 22, 1, 387.Search in Google Scholar

Cheng, W.P., Jia, Y., 2010. Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in Water Resources, 33, 4, 397–410. https://doi.org/10.1016/j.advwatres.2010.01.004Search in Google Scholar

Cooper, W.J., 2014. Responding to crisis: The West Virginia chemical spill. Environ. Sci. Technol., 48, 6, 3095.Search in Google Scholar

Čubanová, L., Dušička, P., Orfánus, M., Rumann, J., 2022. Redesign of an intake fish pass structure. Slovak Journal of Civil Engineering, 30, 4, 49–54. https://doi.org/10.2478/sjce-2022-0028Search in Google Scholar

DHI, 2012. MIKE 3 FLOW MODEL – Hydrodynamic Module. DHI Group, Hørsholm, Denmark, 98 p.Search in Google Scholar

Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment particles in the presence of bed forms under decelerating and accelerating flows. J. Hydrol. Hydromech., 70, 89–102. https://doi.org/10.2478/johh-2022-0002Search in Google Scholar

Duan, W., He, B., Takara, K., Luo, P., Nover, D., Sahu, N., Yamashiki, Y., 2013. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere, 93, 6, 946–953.Search in Google Scholar

Dura, G., Kambourova, V., Simeonova, F. (Eds.), 2007. Management of Intentional and Accidental Water Pollution. Springer, Dordrecht.Search in Google Scholar

El Badia, A., Hamdi, A., 2007. Inverse source problem in an advection-dispersion-reaction system: Application to water pollution. Inverse Problems, 23, 5, 2103–2120. https://doi.org/10.1088/0266-5611/23/5/017Search in Google Scholar

Elder, J.W., 1959. The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5, 4, 544–560. https://doi.org/10.1017/S0022112059000374Search in Google Scholar

Emke, E., Vughs, D., Kolkman, A., de Voogt, P., 2018. Wastewater-based epidemiology generated forensic information: Amphetamine synthesis waste and its impact on a small sewage treatment plant. Forensic Science International, 286, e1–e7.Search in Google Scholar

Essouayed, E., Verardo, E., Pryet, A., Chassagne, R.L., Atteia, O., 2020. An iterative strategy for contaminant source localisation using GLMA optimization and Data Worth on two synthetic 2D Aquifers. Journal of Contaminant Hydrology, 228, 103554. https://doi.org/10.1016/J.JCONHYD.2019.103554Search in Google Scholar

Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters. Academic Press. Search in Google Scholar

Ghane, A., Mazaheri, M., Samani, J.M.V., 2016. Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Journal of Environmental Management, 180, 164–171. https://doi.org/10.1016/j.jenvman.2016.05.015Search in Google Scholar

Hamdi, A., 2016. Detection-Identification of multiple unknown time-dependent point sources in a 2D transport equation: application to accidental pollution. Inverse Problems in Science and Engineering, 25, 10, 1423–1447. https://doi.org/10.1080/17415977.2016.1265957Search in Google Scholar

Hart, J., Sonnenwald, F., Stovin, V., Guymer, I., 2021. Longitudinal dispersion in unsteady pipe flows. Journal of Hydraulic Engineering, 147, 9. https://doi.org/10.1061/(asce)hy.1943-7900.0001918Search in Google Scholar

Hauser, F.M., Metzner, T., Rößler, T., Pütz, M., Krause, S., 2019. Real-time wastewater monitoring as tool to detect clandestine waste discharges into the sewage system. Environmental Forensics, 20, 1, 13–25.Search in Google Scholar

Hečková, P., Bareš, V., Stránský, D., Sněhota, M., 2022. Performance of experimental bioretention cells during the first year of operation. J. Hydrol. Hydromech., 70, 42–61. https://doi.org/10.2478/johh-2021-0038Search in Google Scholar

Ji, L., Liu, J., Li, Z.W., Pan, B.Z., Sun, M., 2017. Accidents of water pollution in China in 2011-2015 and their causes. Journal of Ecology and Rural Environment, 33, 9, 775–782.Search in Google Scholar

Jin, G., Zhang, Z., Yang, Y., Hu, S., Tang, H., Barry, D.A., Li, L., 2020. Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption. Water Research, 172, 115489.Search in Google Scholar

Julínek, T., Říha, J., 2017. Longitudinal dispersion in an open channel determined from a tracer study. Environmental Earth Sciences, 76, 17. https://doi.org/10.1007/s12665-017-6913-1Search in Google Scholar

Kessler, A., Ostfeld, A., Sinai, G., 1998. Detecting accidental contaminations in municipal water networks. Journal of Water Resources Planning and Management, 124, 4, 192–198. https://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(192)Search in Google Scholar

Kováčová, V., 2021. Estimation of nitrate dispersion-diffusion coefficients in agricultural soil profile. Acta Hydrologica Slovaca, 22, 1, 125–131. https://doi.org/10.31577/ahs-2021-0022.01.0015Search in Google Scholar

Kováčová, V., 2023. Deterioration of water quality in aquatic system. Acta Hydrologica Slovaca, 24, 1, 141–150. https://doi.org/10.31577/ahs-2023-0024.01.0016Search in Google Scholar

Krenkel, P.A., Orlob, G., 1962. Turbulent diffusion and reaeration coefficient. J. Sanitary Engineering Div., ASCE, 88, SA2, 53–83.Search in Google Scholar

Lee, Y.J., Park, C., Lee, M.L., 2018. Identification of a contaminant source location in a river system using random forest models. Water, 10, 4, 391. https://doi.org/10.3390/W10040391Search in Google Scholar

Mahar, P.S., Datta, B., 2000. Identification of pollution sources in transient groundwatersystems. Water Resources Management, 14, 3, 209–227. https://doi.org/10.1023/A:1026527901213Search in Google Scholar

Malakar, P., Das, R., 2021. Relative role of sediment entrainments on log-law parameters of longitudinal velocity distributions in mobile bed flows. J. Hydrol. Hydromech., 69, 243–254. https://doi.org/10.2478/johh-2021-0017Search in Google Scholar

Manina, M., Halaj, P., Jurík, L., Kaletová, T., 2020. Modelling seasonal changes of longitudinal dispersion in the Okna river. Acta Scientiarum Polonorum Formatio Circumiectus, 19, 1, 37–46. https://doi.org/10.15576/asp.fc/2020.19.1.37Search in Google Scholar

Mazaheri, M., Mohammad Vali Samani, J., Samani, H.M.V., 2015. Mathematical model for pollution source identification in rivers. Environmental Forensics, 16, 4, 310–321. https://doi.org/10.1080/15275922.2015.1059391Search in Google Scholar

Moghaddam, M.B., Mazaheri, M., Samani, J.M.V., 2021. Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review. Groundwater for Sustainable Development, 15, 100651. https://doi.org/10.1016/J.GSD.2021.100651Search in Google Scholar

Moghaddam, M.B., Mazaheri, M., Samani, J.M.V., Boano, F., 2022. An innovative framework for real-time monitoring of pollutant point sources in river networks. Stochastic Environmental Research and Risk Assessment, 36, 7, 1791–1818. https://doi.org/10.1007/S00477-022-02233-YSearch in Google Scholar

Olías, M., Cánovas, C.R., Basallote, M.D., Macías, F., Pérez-López, R., González, R.M., Millán-Becerro, R., Nieto, J.M., 2019. Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt). Environmental Pollution, 250, 127–136.Search in Google Scholar

Pérez Guerrero, J.S., Skaggs, T.H., 2010. Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients. J. Hydrol., 390, 1–2, 57–65. https://doi.org/10.1016/j.jhydrol.2010.06.030Search in Google Scholar

Richardson, K., Carling, P.A., 2006. The hydraulics of a straight bedrock channel: Insights from solute dispersion studies. Geomorphology, 82, 1–2, 98–125. https://doi.org/10.1016/J.GEOMORPH.2005.09.022Search in Google Scholar

Rieckermann, J., Neumann, M., Ort, C., Huisman, J.L., Gujer, W., 2005. Dispersion coefficients of sewers from tracer experiments. Water Science and Technology, 52, 5. https://doi.org/10.2166/wst.2005.0124Search in Google Scholar

Rocher Morant, J., 2023. Study and Design of a Sensor System for the Detection of Illicit Discharges in Sewers and Water Bodies. Universitat Politècnica de València.Search in Google Scholar

Rossman, L.A., 2000. Epanet 2 Users Manual. US Environmental Protection Agency, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH, 45268.Search in Google Scholar

Rossman, L.A., 2004. Storm Water Management Model User’s Manual Version 5.0. Environmental Protection Agency, Washington, DC.Search in Google Scholar

Runkel, R.L., 1996. Solution of the advection-dispersion equation: Continuous load of finite duration. Journal of Environmental Engineering, 122, 9, 830–832. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:9(830)Search in Google Scholar

Runkel, R.L., Broshears, R.E., 1991. One-dimensional transport with inflow and storage (OTIS): A solute transport model for small streams. CADSWES-Center for Advanced Decision Support for Water and Environmental Systems, Department of Civil Engineering, University of Colorado. 91 p.Search in Google Scholar

Salehin, M., Packman, A.I., Wörman, A., 2003. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Advances in Water Resources, 26, 9, 951–964. https://doi.org/10.1016/S0309-1708(03)00084-8Search in Google Scholar

Skaggs, T.H., Kabala, Z.J., 1994. Recovering the release history of a groundwater contaminant. Water Resources Research, 30, 1, 71–79. https://doi.org/10.1029/93WR02656Search in Google Scholar

Sleziak, P., Jančo, M., Danko, M., Méri, L., Holko, L., 2023. Accuracy of radar-estimated precipitation in a mountain catchment in Slovakia. J. Hydrol. Hydromech., 71, 111–122. https://doi.org/10.2478/johh-2022-0037Search in Google Scholar

Sokáč, M., Velísková, Y., 2022. Dispersion process in conditions of real sewer systems - in situ experiments. Acta Hydrologica Slovaca, 23, 2, 288–295. https://doi.org/10.31577/ahs-2022-0023.02.0033Search in Google Scholar

Sokáč, M., Velísková, Y., Gualtieri, C., 2019. Application of asymmetrical statistical distributions for 1D simulation of solute transport in streams. Water, 11, 10. https://doi.org/10.3390/w11102145Search in Google Scholar

Sonnenwald, F., Shuttleworth, J., Bailey, O., Williams, M., Frankland, J., Rhead, B., Mark, O., Wade, M.J., Guymer, I., 2023. Quantifying Mixing in Sewer Networks for Source Localization. Journal of Environmental Engineering, 149, 5. https://doi.org/10.1061/JOEEDU.EEENG-7134Search in Google Scholar

Stolz Jr, G., 1960. Numerical solutions to an inverse problem of heat conduction for simple shapes. J. Heat Transfer., 82, 1, 20–25. https://doi.org/10.1115/1.3679871Search in Google Scholar

Sun, A.Y., 2007. A robust geostatistical approach to contaminant source identification. Water Resources Research, 43, 2, 2418. https://doi.org/10.1029/2006WR005106Search in Google Scholar

Telci, I.T., Aral, M.M., 2011. Contaminant source location identification in river networks using water quality monitoring systems for exposure analysis. Water Quality, Exposure and Health, 2, 3–4, 205–218. https://doi.org/10.1007/s12403-011-0039-6Search in Google Scholar

Trujillo, D.M., 1978. Application of dynamic programming to the general inverse problem. International Journal for Numerical Methods in Engineering, 12, 4, 613–624.Search in Google Scholar

Tzatchkov, V.G., Aldama, A.A., Arreguin, F.I., 2002. Advection-dispersion-reaction modeling in water distribution networks. Journal of Water Resources Planning and Management, 128, 5, 334–342. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:5(334)Search in Google Scholar

Urcikán, P., Imriška, L., 1986. Stokovanie a čistenie odpadových vôd. Tabuľky na výpočet stôk. (Sewerage and Waste Water Treatment. Tables for Sewer Design). SNTL Alfa, Bratislava. (In Slovak.)Search in Google Scholar

Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013a. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160. https://doi.org/10.2478/johh-2013-0020Search in Google Scholar

Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013b. Exact analytical solutions for contaminant transport in rivers 2. Transient storage and decay chain solutions. J. Hydrol. Hydromech., 61, 3, 250–259. https://doi.org/10.2478/johh-2013-0032Search in Google Scholar

Wang, J., Zhao, J., Lei, X., Wang, H., 2018. New approach for point pollution source identification in rivers based on the backward probability method. Environmental Pollution, 241, 759–774. https://doi.org/10.1016/j.envpol.2018.05.093Search in Google Scholar

Wang, P., Cirpka, O.A., 2021. Surface transient storage under low-flow conditions in streams with rough bathymetry. Water Resources Research, 57, 12, e2021WR029899. https://doi.org/10.1029/2021WR029899Search in Google Scholar

Woodbury, A.D., Ulrych, T.J., 1996. Minimum relative entropy inversion: Theory and application to recovering the release history of a groundwater contaminant. Water Resources Research, 32, 9, 2671–2681. https://doi.org/10.1029/95WR03818Search in Google Scholar

Yeh, H., Der, Lin, C.C., Chen, C.F., 2016. Reconstructing the release history of a groundwater contaminant based on AT123D. Journal of Hydro-Environment Research, 13, 89–102. https://doi.org/10.1016/J.JHER.2015.06.001Search in Google Scholar

Zhang, Y.L., Xiao, M., Zheng, W.H., 2011. Study on sudden water pollution incidents of Guangdong Huanggang River. Applied Mechanics and Materials, 99, 131–135.Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere