Uneingeschränkter Zugang

New methodological approach to characterize dryland´s ecohydrological functionality on the basis of Balance between Connectivity and potential Water Retention Capacity (BalanCR)


Zitieren

Bautista, S., Mayor, Á.G., Bourakhouadar, J., Bellot, J., 2007. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems, 10, 987–998. https://doi.org/10.1007/s10021-007-9074-3 Search in Google Scholar

Berghuis, P.M.J., Mayor, Á.G., Rietkerk, M., Baudena, M., 2020. More is not necessarily better: The role of cover and spatial organization of resource sinks in the restoration of patchy drylands. J. Arid. Environ., 183, 104282. https://doi.org/10.1016/j.jaridenv.2020.104282 Search in Google Scholar

Burrough, P.A., 1986. Principles of Geographic Information Systems for Land Resource Assessment. Monographs on Soil and Resources Survey No. 12, Oxford Science Publications, New York. Search in Google Scholar

Calvo-Cases, A., Arnau-Rosalén, E., Boix-Fayos, C., Estrany, J., Roxo, MJ, Symeonakis, E., 2021. Eco-geomorphological connectivity and coupling interactions at hillslope scale in drylands: Concepts and critical examples. J. Arid. Environ., 186, 104418. https://doi.org/10.1016/j.jaridenv.2020.104418 Search in Google Scholar

D’Odorico, P., Porporato, A., Runyan, C.W., 2019. Dryland Ecohydrology. Springer, Switzerland, 602 p. https://doi.org/10.1007/978-3-030-23269-6 Search in Google Scholar

Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J., Barbier, N., 2011. Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography, 34, 990–1001. https://doi.org/10.1111/j.1600-0587.2010.06694.x Search in Google Scholar

Eldridge, D.J., Ding, J., 2021. Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. New. Phytol., 229, 2637–2646. https://doi.org/10.1111/nph.17045 Search in Google Scholar

Fan, Y., Clark, M., Lawrence, D.M., Swenson, S., Band, L.E., Brantley, L.S., Brooks, P.D., Dietrich, W.E., Flores, A., Grant, G., Kirchner, J.W., Mackay, D.S., McDonnell, J.J., Milly, P.C.D., Sullivan, P.L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B.P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., Yamazaki, D., 2019. Hillslope hydrology in global change research and Earth system modeling. Water. Resour. Res., 55, 1737–1772. https://doi.org/10.1029/2018WR023903 Search in Google Scholar

Gandhi, P., Bonetti, S., Iams, S., Porporato, A., Silber, M., 2020. A fast–slow model of banded vegetation pattern formation in drylands. Phys. D. Nonlinear. Phenom., 410, 132534. https://doi.org/10.1016/j.physd.2020.132534 Search in Google Scholar

García-Fayos, P., Bochet, E., Cerdà, A., 2010. Seed removal susceptibility through soil erosion shapes vegetation composition. Plant Soil, 334, 289–297. https://doi.org/10.1007/s11104-010-0382-6 Search in Google Scholar

Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., Wang, G., 2017. Dryland climate change: Recent progress and challenges. Rev. Geophys., 55, 719–778. https://doi:10.1002/2016RG000550 Search in Google Scholar

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sensing, 54, 1593–1600. Search in Google Scholar

Ludwig, J.A., Eager, R.W., Bastin, G.N., Chewings, V.H., Liedloff, A.C., 2002. A leakiness index for assessing landscape function using remote sensing. Landsc. Ecol., 17, 157–171. https://doi.org/10.1023/A:1016579010499 Search in Google Scholar

Ludwig, J.A., Wilcox, B.P., Breshears, D.D., Tongway, D.J., Imeson, A.C., 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86, 288–297. https://doi.org/10.1890/03-0569 Search in Google Scholar

Ludwig, J.A., Bastin, G.N., Chewings, V.H., Eager, R.W., Lied-loff, A.C., 2007. Leakiness: A new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecol. Indic., 7, 442–454. https://doi.org/10.1016/j.ecolind.2006.05.001 Search in Google Scholar

Maestre, F.T., Ramírez, D.A., Cortina, J., 2007. Ecología del esparto (Stipa tenacissima L.) y los espartales de la Península Ibérica. Ecosistemas, 16, 1–20. https://doi.org/10.7818/re.2014.16-2.00 Search in Google Scholar

Mayor, A.G., Bautista, S., Rodriguez, F., Kéfi, S., 2019. Connectivity-mediated ecohydrological feedbacks and regime shifts in drylands. Ecosystems, 22, 1497–1511. https://doi.org/10.1007/s10021-019-00366-w Search in Google Scholar

Mayor, Á.G., Bautista, S., Small, E.E., Dixon, M., Bellot, J., 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for assessing potential water and soil losses in drylands. Water Resour. Res., 44, 10. https://doi.org/10.1029/2007WR006367 Search in Google Scholar

Meron, E., Gilad, E., Von Hardenberg, J., Shachak, M., Zarmi, Y., 2004. Vegetation patterns along a rainfall gradient. Chaos, Solitons and Fractals, 19, 367–376. https://doi.org/10.1016/S0960-0779(03)00049-3 Search in Google Scholar

Okin, G.S., De Las Heras, M.M., Saco, P.M., Throop, H.L., Vivoni, E.R., Parsons, A.J., Wainwright, J., Peters, D.P.C., 2015. Connectivity in dryland landscapes: Shifting concepts of spatial interactions. Front. Ecol. Environ., 13, 20–27. https://doi.org/10.1890/140163 Search in Google Scholar

Plaza, C., Zaccone, C., Sawicka, K., Méndez, A.M., Tarquis, A., Gascó, G., Heuvelink, G.B.M., Schuur, E.A.G., Maestre, F.T., 2018. Soil resources and element stocks in drylands to face global issues. Sci. Rep., 8, 1–8. https://doi.org/10.1038/s41598-018-32229-0 Search in Google Scholar

Puigdefábregas, J., 2005. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf. Process. Landforms, 30, 133–147. https://doi.org/10.1002/esp.1181 Search in Google Scholar

Puigdefábregas, J., Sole, A., Gutierrez, L., del Barrio, G., Boer, M., 1999. Scales and processes of water and sediment redistribution in drylands: Results from the Rambla Honda field site in Southeast Spain. Earth. Sci. Rev., 48, 39–70. https://doi.org/10.1016/S0012-8252(99)00046-X Search in Google Scholar

Ramírez, D.A., Bellot, J., Domingo, F., Blasco, A., 2007. Stand transpiration of Stipa tenacissima grassland by sequential scaling and multi-source evapotranspiration modelling. J. Hydrol., 342, 124–133. https://doi.org/10.1016/j.jhydrol.2007.05.018 Search in Google Scholar

Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M., Doelman, A., 2021. Evasion of tipping in complex systems through spatial pattern formation. Science, 374, 6564. https://doi.org/10.1126/science.abj0359 Search in Google Scholar

Rietkerk, M., Dekker, S.C., De Ruiter, P.C., Van De Koppel, J., 2004. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305, 1926–1929. https://doi.org/10.1126/science.1101867 Search in Google Scholar

Rodríguez-Caballero, E., Chamizo, S., Roncero-Ramos, B., Roman, R., Cantón, Y., 2018. Runoff from biocrust: A vital resource for vegetation performance on Mediterranean steppes. Ecohydrology, 11, 1–13. https://doi.org/10.1002/eco.1977 Search in Google Scholar

Rodríguez-Caballero, E., Román, J.R., Chamizo, S., Roncero-Ramos, B., Cantón, Y., 2019. Biocrust landscape-scale spatial distribution is strongly controlled by terrain attributes: Topographic thresholds for colonization in a semiarid badland system. Earth Surf. Process. Landforms, 44, 2771–2779. https://doi.org/10.1002/esp.4706 Search in Google Scholar

Rodriguez-Iturbe, I., 2000. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water. Resour. Res., 36, 3–9. Search in Google Scholar

Saco, P.M., Rodríguez, J.F., Moreno-de las Heras, M., Keesstra, Search in Google Scholar

S., Azadi, S., Sandi, S., Baartman, J., Rodrigo-Comino, J., Rossi, M.J., 2020. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena, 186, 104354. https://doi.org/10.1016/j.catena.2019.104354 Search in Google Scholar

Safriel, U., Adeel, Z., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., 2005. Chapter 22: Dryland systems. In: Hassan, R., Scholes, R., Ash, N. (Eds.): Ecosystems and Human Well-being: Current State and Trends. Island Press, Washington, pp. 625–664. Search in Google Scholar

Trichon, V., Hiernaux, P., Walcker, R., Mougin, E., 2018. The persistent decline of patterned woody vegetation: The tiger bush in the context of the regional Sahel greening trend. Glob. Change Biol., 24, 2633–2648. https://doi.org/10.1111/gcb.14059 Search in Google Scholar

Urgeghe, A.M., Bautista, S., 2015. Size and connectivity of upslope runoff-source areas modulate the performance of woody plants in Mediterranean drylands. Ecohydrology, 8, 1292–1303. https://doi.org/10.1002/eco.1582 Search in Google Scholar

Urgeghe, A.M., Breshears, D.D., Martens, S.N., Beeson, P.C., 2010. Redistribution of runoff among vegetation patch types: On ecohydrological optimality of herbaceous capture of runon. Rangel. Ecol. Manag., 63, 497–504. https://doi.org/10.2111/REM-D-09-00185.1 Search in Google Scholar

Wainwright, J., Turnbull, L., Ibrahim, T.G., Lexartza-Artza, I., Thornton, S.F., Brazier, R.E., 2011. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126, 387–404. https://doi.org/10.1016/j.geomorph.2010.07.027 Search in Google Scholar

Whitford, W., Ludwig, E., 2002. Ecology of Desert Systems. Elsevier. Ltd., 343 p. https://doi.org/10.1016/B978-0-12-747261-4.X5000-7 Search in Google Scholar

Winslow, M.D., Vogt, J.V., Thomas, R.J., Sommer, S., Martius, C., Akhtar-Schuster, M., 2011. Science for improving the monitoring and assessment of dryland degradation. Land Degrad. Dev., 22, 145–149. https://doi.org/10.1002/ldr.1044 Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere