Zitieren

Abatzoglou, J.T., Kolden, C.A., 2013. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire, 22, 7, 1003–1020. https://doi.org/10.1071/wf1301910.1071/WF13019 Search in Google Scholar

Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. European Journal of Soil Science, 58, 1254–1259.10.1111/j.1365-2389.2007.00917.x Search in Google Scholar

Archibald, S., Lehmann, C.E.R., Belcher, C.M., Bond, W.J., Bradstock, R.A., Daniau, A.-L., Dexter, K.G., Forrestel, E.J., Greve, M., He, T., Higgins, S.I., Hoffmann, W.A., Lamont, B.B., McGlinn, D.J., Moncrieff, G.R., Osborne, C.P., Pausas, J.G., Price, O., Ripley, B.S., Rogers, B.M., Schwilk, D.W., Simon, M.F., Turetsky, M.R., Van der Werf, G.R., Zanne, A.E., 2018. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett., 13, Article Number: 033003.10.1088/1748-9326/aa9ead Search in Google Scholar

Atlas of the Slovak Republic, 2002. Ministry of the Environment, Bratislava and Slovak Environment Agency, Banská Bystrica, 2002, 344 p. ISBN 80-88833-27-2. Search in Google Scholar

Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona- García, A., Casanova-Gascón, J. 2017. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Science of the Total Environment, 601–602, 1119–1128. Search in Google Scholar

Benito, E., Varela, E., Rodríguez-Alleres, M., 2019. Persistence of water repellency in coarse-textured soils under various types of forests in NW Spain. Journal of Hydrology and Hydromechanics, 67, 129–134.10.2478/johh-2018-0038 Search in Google Scholar

Bisdom, E.B.A., Dekker, L.W., Schoute, J.F.T., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118.10.1016/B978-0-444-81490-6.50013-3 Search in Google Scholar

Blonska, E., Klamerus-Iwan, A., Lagan, S., Lasota, J., 2018. Changes to the water repellency and storage of different species of deadwood based on decomposition rate in a temperate climate. Ecohydrology, 11, 8, Article Number: e2023.10.1002/eco.2023 Search in Google Scholar

Certini, G., Nocentini, C., Knicker, H., Arfaioli, P., Rumpel, C., 2011. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, 167–168, 148–155.10.1016/j.geoderma.2011.09.005 Search in Google Scholar

Czachor, H., Rajkai, K., Lichner, L., Jozefaciuk, G., 2020. Sample geometry affects water retention curve: simulation and experimental proves. Journal of Hydrology, 588, Article Number: 125131.10.1016/j.jhydrol.2020.125131 Search in Google Scholar

DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol., 231–232, 195–206.10.1016/S0022-1694(00)00194-3 Search in Google Scholar

Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 375–384.10.1016/j.geoderma.2010.06.005 Search in Google Scholar

Ditzler, C., Scheffe, K., Monger, H.C. (Eds.), 2017. Soil Survey Manual. Agriculture Handbook 18. 4th ed. Government Printing Office, Washington, D.C. Search in Google Scholar

Doerr, S.H., 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Landforms, 23, 663–668.10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6 Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Science Reviews, 51, 33–65.10.1016/S0012-8252(00)00011-8 Search in Google Scholar

Doerr, S.H., Blake, W.H., Shakesby, R.A., Stagnitti, F., Vuurens, S.H., Humphreys, G.S., Wallbrink, P., 2004. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 13, 157–163.10.1071/WF03051 Search in Google Scholar

Ebel, B.A., 2020. Temporal evolution of measured and simulated infiltration following wildfire in the Colorado Front Range, USA: Shifting thresholds of runoff generation and hydrologic hazards. Journal of Hydrology, 585, Article Number: 124765.10.1016/j.jhydrol.2020.124765 Search in Google Scholar

Ebel, B.A., Moody, J.A., Martin, D.A., 2022. Post-fire temporal trends in soil-physical and -hydraulic properties and simulated runoff generation: Insights from different burn severities in the 2013 Black Forest Fire, CO, USA. Science of the Total Environment, 802, Article Number: 149847.10.1016/j.scitotenv.2021.149847 Search in Google Scholar

Flannigan, M., Cantin, A.S., de Groot, W.J., Wotton, M., Newbery, A., Gowman, L.M., 2013. Global wildland fire season severity in the 21st century. For. Ecol. Manage., 294, S1, 54–61. https://doi.org/10.1016/j.foreco.2012.10.02210.1016/j.foreco.2012.10.022 Search in Google Scholar

Garcia-Corona, R., Benito, E., de Blas, E., Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13, 2, 195–199.10.1071/WF03068 Search in Google Scholar

González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter – a review. Environment International, 30, 855–870.10.1016/j.envint.2004.02.003 Search in Google Scholar

Gray, D.M., Dighton, J., 2006. Mineralization of forest litter nutrients by heat and combustion. Soil Biology & Biochemistry, 38, 1469–1477.10.1016/j.soilbio.2005.11.003 Search in Google Scholar

Hološ, S., Šurda, P., 2021. Evaluation of drought – Review of drought indices and their application in the recent studies from Slovakia. Acta Horticulturae et Regiotecturae, 24, s1, 97–108. https://doi.org/10.2478/ahr-2021-001510.2478/ahr-2021-0015 Search in Google Scholar

ISO 10390, 2005. Soil quality. Determination of pH. International Organization of Standardization, Geneva. (https://www.iso.org/standard/40879.html) Search in Google Scholar

ISO 10693, 1995. Soil quality. Determination of carbonate content. Volumetric method. International Organization of Standardization, Geneva. (https://www.iso.org/standard/18781.html) Search in Google Scholar

ISO 10694, 1995. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis). International Organization of Standardization, Geneva. (https://www.iso.org/standard/18782.html) Search in Google Scholar

ISO 11277, 2009. Soil quality. Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. International Organization of Standardization, Geneva. (https://www.iso.org/standard/54151.html) Search in Google Scholar

Kostka, S.J., 2000. Amelioration of water repellency in highly managed soils and the enhancement of turfgrass performance through the systematic application of surfactants. J. Hydrol., 231–232, 359–370.10.1016/S0022-1694(00)00208-0 Search in Google Scholar

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.10.1127/0941-2948/2006/0130 Search in Google Scholar

Leelamanie, D.A.L., Nishiwaki, J., 2019. Water repellency in Japanese coniferous forest soils as affected by drying temperature and moisture. Biologia, 74, 127–137.10.2478/s11756-018-0157-8 Search in Google Scholar

Lichner, L., Dlapa, P., Doerr, S.H., Mataix-Solera, J., 2006. Evaluation of different clay minerals as additives for soil water repellency alleviation. Applied Clay Science, 31, 3–4, 238–248.10.1016/j.clay.2005.10.012 Search in Google Scholar

Martínez, S.I., Contreras, C.P., Acevedo, S.E., Bonilla, C.A., 2022. Unveiling soil temperature reached during a wildfire event using ex-post chemical and hydraulic soil analysis. Science of the Total Environment, 822, Article Number: 153654.10.1016/j.scitotenv.2022.15365435124058 Search in Google Scholar

McKissock, I., Gilkes, R.J., Harper, R.J., Carter, D.J., 1998. Relationships of water repellency to soil properties for different spatial scales of study. Aust. J. Soil Res., 36, 495–507.10.1071/S97071 Search in Google Scholar

McKissock, I., Gilkes, R.J., Walker, E.L., 2002. The reduction of water repellency by added clay as influenced by clay and soil properties. Applied Clay Sci., 20, 225–241.10.1016/S0169-1317(01)00074-6 Search in Google Scholar

Mielnik, L., Hewelke, E., Weber, J., Oktaba, L., Jonczak, J., Podlasiński, M., 2021. Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agriculture, Ecosystems and Environment, 319, Article Number: 107554.10.1016/j.agee.2021.107554 Search in Google Scholar

Moritz, M.A., Parisien, M.-A., Batllori, E., Krawchuk, M.A., Van Dorn, J., Ganz, D.J., Hayhoe, K., 2012. Climate change and disruptions to global fire activity. Ecosphere, 3, 6, 1–22. https://doi.org/10.1890/ES11-00345.110.1890/ES11-00345.1 Search in Google Scholar

Müller, K., Mason, K., Strozzi, A.G., Simpson, R., Komatsu, T., Kawamoto, K., Clothier, B., 2018. Runoff and nutrient loss from a water-repellent soil. Geoderma, 322, 28–37.10.1016/j.geoderma.2018.02.019 Search in Google Scholar

Novák, V., 2021. Ecosystems and global changes. Acta Horticulturae et Regiotecturae, 24, s1, 70–79. https://doi.org/10.2478/ahr-2021-001210.2478/ahr-2021-0012 Search in Google Scholar

Novák, V., Lichner, Ľ., Zhang, B., Kňava, K., 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia, 64, 3, 483–486.10.2478/s11756-009-0099-2 Search in Google Scholar

Reilly, M.J., Dunn, C.J., Meigs, G.W., Spies, T.A., Kennedy, R.E., Bailey, J.D., Briggs, K., 2017. Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere, 8, 3, Article Number: e01695. https://doi.org/10.1002/ecs2.169510.1002/ecs2.1695 Search in Google Scholar

NCSS 12 Statistical Software, 2018. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss. Search in Google Scholar

Robichaud, P.R., Hungerford, R.D., 2000. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. J. Hydrol., 231–232, 207–219.10.1016/S0022-1694(00)00195-5 Search in Google Scholar

Roper, M.M., 2006. Potential for remediation of water repellent soils by inoculation with wax-degrading bacteria in southwestern Australia. Biologia, 61, Suppl. 19, S358–S362.10.2478/s11756-006-0189-3 Search in Google Scholar

Rye, C.F., Smettem, K.R.J., 2017. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma, 289, 142–149.10.1016/j.geoderma.2016.11.032 Search in Google Scholar

Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, Ľ., 2017. Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles. Journal of Hydrology and Hydromechanics, 65, 99–104.10.1515/johh-2016-0055 Search in Google Scholar

Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307.10.1016/j.earscirev.2005.10.006 Search in Google Scholar

Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook, 18 p. Search in Google Scholar

Schnitzer, M.., Hoffman, I., 1964. Pyrolysis of soil organic matter. Soil Science Society of America Journal, 28, 4, 520–525.10.2136/sssaj1964.03615995002800040021x Search in Google Scholar

Täumer, K., Stoffregen, H., Wessolek, G., 2006. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone Journal, 5, 405–411.10.2136/vzj2005.0031 Search in Google Scholar

Terefe, T., Mariscal-Sancho, I., Peregrina, F., Espejo, R., 2008. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma, 143, 3–4, 273–280.10.1016/j.geoderma.2007.11.018 Search in Google Scholar

Tinebra, I., Alagna, V., Iovino, M., Bagarello, V., 2019. Comparing different application procedures of the water drop penetration time test to assess soil water repellency in a fire affected Sicilian area. Catena, 177, 41–48.10.1016/j.catena.2019.02.005 Search in Google Scholar

Tobiašová, E., Barančíková, G., Gömöryová, E., 2016. Pôdna organická hmota. [Soil Organic Matter.] Slovak University of Agriculture, Nitra, 215 p. (In Slovak) Search in Google Scholar

Turski, M., Lipiec, J., Chodorowski, J., Sokołowska, Z., Skic, K., 2022. Vertical distribution of soil water repellency in ortsteinic soils in relation to land use. Soil & Tillage Research, 215, Article Number: 105220.10.1016/j.still.2021.105220 Search in Google Scholar

Úbeda, X., Pereira, P., Outeiro, L., Martin, D. A., 2009. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development, 20, 589–608.10.1002/ldr.930 Search in Google Scholar

WRB, 2014. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. Rome, 192 p. Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere