1. bookVolumen 70 (2022): Heft 4 (December 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Changes in organic molecular marker signatures in soils amended with biochar during a three-year experiment with maize on a Fluvisol

Online veröffentlicht: 16 Nov 2022
Volumen & Heft: Volumen 70 (2022) - Heft 4 (December 2022)
Seitenbereich: 401 - 409
Eingereicht: 28 Jul 2022
Akzeptiert: 31 Aug 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-4333
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Atanassova, I., Doerr, S.H., Bryant, R., 2012. Changes in organic compound composition in soil following heating to maximum soil water repellency under anoxic conditions. Environmental Chemistry, 9, 369–378.10.1071/EN11122 Search in Google Scholar

Atanassova, I., Harizanova, M., Benkova, M., Simeonova, T., Nenova, L., 2022. Organic molecular markers in soils ameliorated with biochar. Proceedings of the Bulgarian Academy of Sciences, 75, 3, 467–474. https://doi.org/10.7546/CRABS.2022.03.1810.7546/CRABS.2022.03.18 Search in Google Scholar

Atanassova, I., Milena, H., Banov, M., 2020. Free lipid biomarkers in anthropogenic soils. In: Soil Health Restoration and Management. Springer, Singapore, pp. 321–355.10.1007/978-981-13-8570-4_9 Search in Google Scholar

Atanassova, I., Mills, G., 2016. Biogenic and anthropogenic lipid markers in sediments from a marsh habitat associated with the LCP chemicals superfund site in Brunswick, Georgia, USA. Water, Air, & Soil Pollution, 227, 1, 1–13. DOI:10.1007/s11270-015-2740-810.1007/s11270-015-2740-8 Search in Google Scholar

Atanassova, I.D., Doerr, S.H., Mills., G.L., 2014. Hot-watersoluble organic compounds related to hydrophobicity in sandy soils. pp. 137–146 In: Hartemink, A.E., McSweeney, K. (Eds.): Progress in Soil Science: Soil Carbon. Springer International Publishing, Switzerland.10.1007/978-3-319-04084-4_14 Search in Google Scholar

de Resende, M.F., Brasil, T.F., Madari, B.E., Pereira Netto, A.D., Novotny, E.H., 2018. Polycyclic aromatic hydrocarbons in biochar amended soils: Long-term experiments in Brazilian tropical areas. Chemosphere, 200, 641–648.10.1016/j.chemosphere.2018.02.13929518648 Search in Google Scholar

Eckmeier, E., Wiesenberg, G.L.B., 2009. Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for pre-historic biomass burning. Journal of Archaeological Science, 36, 1590–1596.10.1016/j.jas.2009.03.021 Search in Google Scholar

Harizanova, M., Atanassova, I., Benkova, M., Nenova, L., Simeonova, T., 2022. Organic molecular markers in a Fluvisol amended with organic ameliorants. Comptes Rendus de l’Académie Bulgare des Sciences (In press).10.7546/CRABS.2022.09.18 Search in Google Scholar

Kuhn, T.K., Krull, E.S., Bowater, A., Grice, K., Gleixner, G., 2010. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry, 41, 88–95.10.1016/j.orggeochem.2009.08.003 Search in Google Scholar

Kuzyakov, Y., Bogomolova, I., Glaser, B., 2014. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. & Biochem., 70, 229–236.10.1016/j.soilbio.2013.12.021 Search in Google Scholar

Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change, 11, 2, 403–427.10.1007/s11027-005-9006-5 Search in Google Scholar

Lichtfouse, E., Eglinton, T.I., 1995. 13C and 14C evidence of pollution of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry, 23, 969–973.10.1016/0146-6380(95)00082-8 Search in Google Scholar

Meier, U., 2001. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph. DOI:10.5073/bbch0515 Search in Google Scholar

Montanarella, L., Lugato, E., 2013. The application of biochar in the EU: challenges and opportunities. Agronomy, 3, 2, 462–473.10.3390/agronomy3020462 Search in Google Scholar

Naafs, D.F.W, van Bergen, P.F, de Jong, MA, Oonincx, A., de Leeuw, J.W., 2004. Total lipid extracts from characteristic soil horizons in a podzol profile. European Journal of Soil Science, 55, 657–669.10.1111/j.1365-2389.2004.00633.x Search in Google Scholar

Petkova, G., Nedyalkova, K., Mikova, A., Atanassova, I., 2018. Microbiological characteristics of biochar amended alluvial meadow soil. Bulgarian Journal of Agricultural Science, 24, Suppl. 2, 81–84. Search in Google Scholar

Schellekens, J., Silva, C.A., Buurman, P., Rittl, T.F., Domingues, R.R., et al., 2018. Molecular characterization of biochar from five Brazilian agricultural residues obtained at different charring temperatures. Journal of Analytical and Applied Pyrolysis, 130, 106–117.10.1016/j.jaap.2018.01.020 Search in Google Scholar

Schnitzer, M., Hindle, C.A., Meglic, M., 1986. Supercritical gas extraction of alkanes and alkanoic acids from soil and humic material. Soil Sci. Soc. Am. J., 50, 913–919.10.2136/sssaj1986.03615995005000040017x Search in Google Scholar

Sugiura, Y., Akiyama, R., Tanaka, S., Yano, K., Kameoka, H., et al., 2020. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences, 117, 41, 25779–25788. DOI: 10.1073/pnas.200694811710.1073/pnas.2006948117756831932999061 Search in Google Scholar

Thomas, C.L., Jansen, B., van Loon, E.E., Wiesenberg, G.L.B., 2021. Transformation of n-alkanes from plant to soil: a review. Soil, 7, 785–809. https://doi.org/10.5194/soil-7-785-202110.5194/soil-7-785-2021 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo