1. bookVolumen 70 (2022): Heft 2 (June 2022)
28 Mar 2009
4 Hefte pro Jahr
access type Uneingeschränkter Zugang

Effects of carbonated water injection on the pore system of a carbonate rock (coquina)

Online veröffentlicht: 19 May 2022
Volumen & Heft: Volumen 70 (2022) - Heft 2 (June 2022)
Seitenbereich: 257 - 268
Eingereicht: 01 Oct 2021
Akzeptiert: 27 Dec 2021
28 Mar 2009
4 Hefte pro Jahr

CO2 injection is a well-known Enhanced Oil Recovery (EOR) technique that has been used for years to improve oil extraction from carbonate rock and other oil reservoirs. Optimal functioning of CO2 injection requires a thorough understanding of how this method affects the petrophysical properties of the rocks. We evaluated pore-scale changes in these properties, notably porosity and absolute permeability, following injection of CO2-saturated water in two coquina outcrop samples from the Morro do Chaves Formation in Brazil. The coquinas are close analogues of Pre-salt oil reservoirs off the coast of southern Brazil. The effects of carbonated water injection were evaluated using a series of experimental and numerical steps before and after coreflooding: cleaning, basic petrophysics, microtomography (microCT) imaging, nuclear magnetic resonance (NMR) analyses, and pore network modeling (PNM). Our study was motivated by an earlier experiment which did not show the development of a wormhole in the center of the sample, with a concomitant increase in permeability of the coquina as often noted in the literature. We instead observed a substantial decrease in the absolute permeability (between 71 and 77%), but with little effect on the porosity and no wormhole formation. While all tests were carried out on both samples, here we present a comprehensive analysis for one of the samples to illustrate changes at the pore network level. Different techniques were used for the pore-scale analyses, including pore network modeling using PoreStudio, and software developed by the authors to enable a statistical analysis of the pore network. Results provided much insight in how injected carbonated water affects the pore network of carbonate rocks.

Abbaszadeh, M., Nasiri, M., Riazi, M., 2016. Experimental investigation of the impact of rock dissolution on carbonate rock properties in the presence of carbonated water. Env. Earth Sci., 75, 9, 791.10.1007/s12665-016-5624-3 Search in Google Scholar

Al Ratrout, A., Blunt, M.J., Bijeljic, B., 2018. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness. Proc. Natl. Acad. Sci., 115, 8901–8906. DOI: 10.1073/pnas.180373411510.1073/pnas.1803734115613034530120127 Search in Google Scholar

Alvarado, F.E., Grader, A.S., Karacan, O., 2004. Visualization of three phases in porous media using micro computed tomography. Petrophysics, 45, 6, 490–498. Search in Google Scholar

Andrew, M., Bijeljic, B., Blunt, M.J., 2014. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography Adv. Water Resour., 68, 24–31. https://doi.org/10.1016/j.advwatres.2014.02.01410.1016/j.advwatres.2014.02.014 Search in Google Scholar

ANP, 2017. http://geofisicabrasil.com/noticias/55-governo21/870-anp-segundo-poco-tao-grande-quanto-primeiro.html Search in Google Scholar

ANP, 2018. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis. http://www.anp.gov.br/publicacoes/anuarioestatistico/anuario-estatistico-2018 Search in Google Scholar

Armstrong, R.T., Sun, C., Mostaghimi, P., Berg, S., Rücker, M., Luckham, P., Georgiadis, A., McClure, J.A., 2021. Multiscale characterization of wettability in porous media. Transp. Porous Media, 140, 1, 215–240. https://doi.org/10.1007/s11242-021-01615-010.1007/s11242-021-01615-0 Search in Google Scholar

Azambuja, N.C., Arienti, L.M., 1998. Guidebook to the Rift-Drift Sergipe-Alagoas, Passive Margin Basin, Brazil. The 1998 Am. Assoc. Petrol. Geol. Int. Conf. and Exhib. Search in Google Scholar

Avizo, 2018. Avizo version 9.5.0. Thermo Fisher Scientific, Berlin. Search in Google Scholar

Akbar, M., Vissapragada, B., Alghamdi, A.H., Allen, D., Herron, M., Carnegie, A., Dutta, D., Olesen, J-R., Chourasiya, R.D., Logan, D., Stief, D., Netherwood, R., Russell, S.D., Saxena, K., 2000. A snapshot of carbonate reservoir evaluation. Oilfield Rev., 12, 4, 20–21. Search in Google Scholar

Burchette, T.P., 2012. Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geological Society, London, Special Publications, 370, 1, 17–37.10.1144/SP370.14 Search in Google Scholar

Buttler, J.P., Reeds, J.A., Dawson, S.V., 1981. Estimating solution of first kind integral equations with non-negative constraints and optimal smoothing. SIAM J. Num. Anal., 18, 3, 381–397. https://doi.org/10.1137/071802510.1137/0718025 Search in Google Scholar

Cássaro, F.A.M., Durand, A.N.P., Gimenez, D., Vaz, C.M.P., 2017. Pore-size distributions of soils derived using a geometrical approach and multiple resolution microCT images. Soil Sci. Soc. Am. J., 81, 3, 468–476.10.2136/sssaj2016.09.0291 Search in Google Scholar

Chi, L., Heidari, Z., 2016. Directional-permeability assessment in formations with complex pore geometry with a new NMR based permeability model. Soc. Petr. Eng. J., 21, 4, 1436–1449.10.2118/179734-PA Search in Google Scholar

Corbett, P.W.M., Estrella, R., Rodriguez, A.M., Shoeir, A., Borghi, L.F., Tavares, A.C., 2016. Integration of Cretaceous Morro do Chaves rock properties (NE Brazil) with the Holocene Hamelin Coquina architecture (Shark Bay, Western Australia) to model effective permeability. Petr. Geosci., 22, 2, 105–122.10.1144/petgeo2015-054 Search in Google Scholar

Corbett, P.W.M., Wang, H., Câmara, R.N., Tavares, A.C., Borghi, L.F., Perosi, F., Machado, A., Jiang, Z., Ma, J., Bagueria, R., 2017. Using the porosity exponent (m) and pore-scale resistivity modelling to understand pore fabric types in coquinas (Barremian-Aptian) of the Morro do Chaves Formation, NE Brazil. Marine Petrol. Geol., 88, 628–647.10.1016/j.marpetgeo.2017.08.032 Search in Google Scholar

de Vries, E.T., Raoof, A., van Genuchten, M.Th., 2017. Multiscale modelling of dual-porosity media: a computational pore-scale study flow and solute transport. Adv. Water Resour., 105, 82–95. DOI: 10.1016/j.advwatres.2017.04.01310.1016/j.advwatres.2017.04.013 Search in Google Scholar

Drexler, S., Silveira, T.M., De Belli, G., Couto, P., 2019. Experimental study of the effect of carbonated brine on wettability and oil displacement for EOR application in the Brazilian Pre-Salt reservoirs. In: Energy Sources. Part A: Recovery, Utilization, and Environmental Effects, pp. 1–15.10.1080/15567036.2019.1604877 Search in Google Scholar

Godoy, W., Pontedeiro, E.M., Hoerlle, F., Raoof, A., van Genuchten, M.Th., Santiago, J., Couto, P., 2019. Computational and experimental pore-scale studies of a carbonate rock sample. J. Hydrol. Hydromech., 67, 4, 372–383. DOI: 10.2478/johh-2019-000910.2478/johh-2019-0009 Search in Google Scholar

Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M., 2002. On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech., 457, 213–254. DOI: 10.1017/S002211200 2007735 Search in Google Scholar

Grigg, R.B., Svec, R.K., 2003. Co-injected CO2-brine interactions with Indiana Limestone. In: Proc. SCA2003-19 Int Symp. Society of Core Analysts, Pau, France. Search in Google Scholar

Gundogar, A.S., Ross, C.M., Akin, S., Kovscek, A.R., 2016. Multiscale pore structure characterization of Middle East carbonates. J. Petr. Sci. Eng., 146, 570–583. https://doi.org/10.1016/j.petrol.2016.07.01810.1016/j.petrol.2016.07.018 Search in Google Scholar

Hoerlle, F.O., Silva, W.G.A.L., Pontedeiro, E.M., Couto, P., 2020. Porous system characterization of a heterogeneous carbonate rock bed using x-ray microtomography. In: Inter-pore. Qingdao, China. Search in Google Scholar

Jia, B., 2019. Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. J. Taiwan Inst. Chem. Eng., 104, 82–93.10.1016/j.jtice.2019.08.014 Search in Google Scholar

Kantzas, A., Bryan, J., Taheri, S., 2012. Fundamentals of Fluid Flow in Porous Media. Open Source https://perminc.com/resources/fundamentals-of-fluid-flow-in-porous-media/ Search in Google Scholar

Lima, M.C.O., Pontedeiro, E.M., Ramirez, M.G., Boyd, A., van Genuchten, M.Th., Borghi, L.F., Couto, P., Raoof, A., 2020. Petrophysical correlations for permeability of coquinas (carbonate rocks). Transp. Porous Media, 135, 287–308. https://doi.org/10.1007/s11242-020-01474-110.1007/s11242-020-01474-1 Search in Google Scholar

Luquot, L., Rodriguez, O., Gouze, P., 2014. Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transp. Porous Media, 101, 3, 507–532.10.1007/s11242-013-0257-4 Search in Google Scholar

Mahzari, P., Jones, A.P., Oelkers, E.H., 2019. An integrated evaluation of enhanced oil recovery and geochemical processes for carbonated water injection in carbonate rocks. J. Petr. Sci. Eng., 181, 106188.10.1016/j.petrol.2019.106188 Search in Google Scholar

Mazzullo, S.J., 2004. Overview of porosity in carbonate reservoirs. Kansas Geol. Soc. Bull., 79, 1–2, 1–19. Search in Google Scholar

Meiboom, S., Gill, D., 1958. Modified spin-echo method for measuring nuclear relaxation times. Rev. Scient. Instr., 29, 688. https://doi.org/10.1063/1.171629610.1063/1.1716296 Search in Google Scholar

Menke, H.P., Andrew, M.G., Blunt, M.J., Bijeljic, B., 2016. Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography; Effect of initial pore structure and flow conditions. Chem. Geol., 428, 15–26.10.1016/j.chemgeo.2016.02.030 Search in Google Scholar

Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J.B., Ligocki, T.J., Shen, C., Steefel, C., 2014. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Env. Sci. Techn., 48, 13, 7453–7460. DOI: 10.1021/es501343810.1021/es5013438 Search in Google Scholar

Nowrouzi, I., Manshad, A.K., Mohammadi, A.H., 2020. The mutual effects of injected fluid and rock during imbibition in the process of low and high salinity carbonated water injection into carbonate oil reservoirs. J. Molec. Liq., 305, 112432.10.1016/j.molliq.2019.112432 Search in Google Scholar

Oliveira, J.A.T., Cássaro, F.A.M., Pires, L.F., 2020. The porous size distribution obtained and analyzed by free access software. Revista Brasileira de Ensino de Física, 42.10.1590/1806-9126-rbef-20200192 Search in Google Scholar

Paraview, 2020. Paraview version 5.9.0. Kitware. Search in Google Scholar

PoreStudio, 2021. PoreStudio. https://porestudio.com Search in Google Scholar

Prodanović, M., Lindquist, W.B., Seright, R.S., 2004. 3D microtomographic study of fluid displacement in rock cores. Devel. Water Sci., 55, 1, 223–234. DOI: 10.1016/S0167-5648(04)80052-210.1016/S0167-5648(04)80052-2 Search in Google Scholar

Ramamoorthy, R., Boyd, A., Neville, T., Seleznev, N., Sun, H., Flaum, C., Ma, J., 2008. A new workflow for petrophysical and textural evaluation of carbonate reservoirs. In: Proc. SPWLA 49th Annual Logging Symposium. Search in Google Scholar

Rabbani, A., Babaei, M., 2019. Hybrid pore-network and Lattice-Boltzmann permeability modelling accelerated by machine learning. Adv. Water Resour., 126, 116–128. DOI: 10.1016/j.advwatres.2019.02.01210.1016/j.advwatres.2019.02.012 Search in Google Scholar

Raoof, A., Hassanizadeh, S.M., 2012. A new formulation for pore- network modeling of two- phase flow. Water Resour. Res., 48, 1. https://doi.org/10.1029/2010WR01018010.1029/2010WR010180 Search in Google Scholar

Raoof, A., Nick, H.M., Hassanizadeh, S.M., Spiers, C.J., 2013. PoreFlow: a complex pore network model for simulation of reactive transport in variably saturated porous media. Comp. Geosci., 61, 160–174.10.1016/j.cageo.2013.08.005 Search in Google Scholar

Rocha, A.S., Pontedeiro, E.M. B.D., Alves, J.L.D., Silva, W.G.A.L., 2019. Obtaining pore-size distribution by image analysis of stacks with large image spacing without resizing. In: CILAMCE 2019, XL Ibero-Latin-American Congress on Computational Methods in Engineering. Search in Google Scholar

Saxena, N., Hofmann, R., Alpak, F.O., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., Wilson, O.B., 2017. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Adv. Water Resour., 109, 211–235. https://doi.org/10.1016/j.advwatres.2017.09.00710.1016/j.advwatres.2017.09.007 Search in Google Scholar

Schafer, W., 1972. Ecology and Paleoecology of Marine Environments. Univ. Chicago Press, Chicago, 568 p. Search in Google Scholar

Schnaar, G., Brusseau, M.L., 2006. Characterizing pore-scale configuration of organic immiscible liquid in multiphase systems with synchrotron X-ray microtomography. Vadose Zone J., 5, 2, 641–648. http://dx.doi.org/10.2136/vzj2005.006310.2136/vzj2005.0063 Search in Google Scholar

Seyyedi, M., Mahmud, H.K.B., Verral, M., Giwelli, A., Esteban, L., Ghasemiziarani, M., Clennell, B., 2020. Pore structure changes occur during CO2 injection into carbonate reservoirs. Scientific Reports, 10, 3624.10.1038/s41598-020-60247-4 Search in Google Scholar

Sheng, J.J., 2013. Enhanced oil recovery field case studies. Gulf Professional Publishing. Search in Google Scholar

Yang, Z., Peng, X.F., Lee, D.J., Chen, M.Y., 2009. An image-based method for obtaining pore-size distribution of porous media. Env. Sci. Techn., 43, 9, 3248–3253.10.1021/es900097e Search in Google Scholar

Thompson, D.L., Stilwell, J.D., Hall, M., 2015. Lacustrine carbonate reservoirs from early Cretaceous Rift Lakes of Western Gondwana: Pre-salt Coquinas of Brazil and West Africa. Gondwana Res., 28, 1, 26–51. http://dx.doi.org/10.1016/j.gr.2014.12.00510.1016/j.gr.2014.12.005 Search in Google Scholar

Wang, Q., Yang, S., Han, H., Wang, L., Qian, K., Pang, J., 2019. Experimental investigation on the effects of CO2 displacement methods on petrophysical property changes of ultra-low permeability sandstone reservoirs near injection wells. Energies, 12, 327–347.10.3390/en12020327 Search in Google Scholar

Wilson, A., 2014. Multiscale simulation of WAG flooding in naturally fractured reservoirs. J. Petr. Techn., 66, 73–75. https://doi.org/10.2118/0114-0073-JPT10.2118/0114-0073-JPT Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo