Uneingeschränkter Zugang

A modification of predictive three-component model for turbulent flows of complex slurries in pipelines based on experimental results

   | 10. Aug. 2020

Zitieren

Chilton, R.A., Stainsby, R., 1998. Pressure loss equations for laminar and turbulent non-Newtonian pipe flow. Journal of Hydraulic Engineering, 124, 5, 522–529.10.1061/(ASCE)0733-9429(1998)124:5(522)Search in Google Scholar

Clift, R., Wilson, K.C., Addie, G.R., 1982. A mechanistically-based method for scaling pipeline tests for settling slurries. In: Proc. Hydrotransport 8, Johannesburg, South Africa, pp. 91–101.Search in Google Scholar

Durand, R., 1953. Basic relationships of the transportation of solids in pipes – experimental research. In: Proc. Minnesota International Hydraulic Convention, pp. 89–103.Search in Google Scholar

Durand, R., Condolios, E. 1952. Étude expérimentale du refoulement des matériaux en conduit. In: 2émes Journées de l´Hydralique, pp. 29–55.Search in Google Scholar

García Farrés, G., 2018. Development of a Tool for a 2-phase Flow Electrical Resistance Tomography Image Reconstruction and Analysis. MSc Thesis. Universitat Politècnica de Catalunya, 50 p.Search in Google Scholar

Heever, E., Sutherland, A., Haldenwang, R., 2014. Influence of the rheological model used in pipe-flow prediction techniques for homogeneous non-Newtonian fluids. J. Hydraul. Eng., 140, 12, 04014059.10.1061/(ASCE)HY.1943-7900.0000934Search in Google Scholar

Kesely, M., 2016. Evaluation of settling velocity of coarse particles in visco-plastic fluid and frictional loss in complex slurry flow. MSc Thesis. CTU in Prague, 51 p.Search in Google Scholar

Kesely, M., 2020. Pipe flow of non-Newtonian complex slurries. PhD Thesis, CTU in Prague, in print.Search in Google Scholar

Kesely, M., Matoušek V., 2016. Laminar settling of glass beads in visco-plastic liquids. Civil Engineering Journal, 25, 1, 1–9.10.14311/CEJ.2016.01.0001Search in Google Scholar

Kesely, M., Matoušek, V., 2017. Laboratory testing of pipe flows of bimodal complex slurries. In: Proc. T&S18, Prague, Czech Republic, pp. 161–168.Search in Google Scholar

Kesely, M., Matoušek, V., Svoboda, L., 2018. Modelling of coarse-grained bed sliding in pipe flow of viscoplastic carrying liquid. In: Proc. 9th CHoPS, London, UK, 6 p.Search in Google Scholar

Matoušek, M., Krupička, J., Picek, T., 2013. Validation of transport and friction formula for upper plane bed by experiments in rectangular pipes. J. Hydrol. Hydromech., 61, 2, 120–125.10.2478/johh-2013-0016Search in Google Scholar

Matoušek, M., Krupička, J., Pěník, V., 2014. Distribution of medium-to-coarse glass beads in slurry pipe flow: evaluation of measured concentration profiles. Particul. Sci. Technol., 32, 2, 186–196.10.1080/02726351.2013.840706Search in Google Scholar

Matoušek, V., Pěník, V., Pullum, L., Chryss, A., 2015. Experimental study of bed friction in stratified flow with viscoplastic carrier in pipe. In: Proc. T&S16, Delft, Netherlands, pp. 175–184.Search in Google Scholar

Matoušek, V., Kesely, M., Visintainer, R., Furlan, J., Sellgren, A., 2018. Pipe friction of bimodal settling slurry flow. In: Proc. 9th CHoPS, London, UK, 6 p.Search in Google Scholar

Metzner, A.B., Reed, J.C., 1955. Flow of non-Newtonian fluids – correlation of laminar, transition and turbulent flow regions. AIChE, 1, 4, 434–440.10.1002/aic.690010409Search in Google Scholar

Miedema, S., Ramsdell, R., 2015. The limit deposit velocity model, new approach. J. Hydrol. Hydromech., 63, 4, 273–286.10.1515/johh-2015-0034Search in Google Scholar

Pěník, V., Kesely, M., Matoušek, V., 2015. Coarse particle support in turbulent flow of visco-plastic carrier. In: Proc. EFM 2015, Prague, Czech Republic, pp. 588–592.10.1051/epjconf/201611402090Search in Google Scholar

Pullum, L., Chryss, A., Graham, L., Matoušek, V., Pěník, V., 2015. Modelling turbulent transport of solids in non-Newtonian carrier fluids applicable to tailing disposals. In: Proc. T&S16, Delft, Netherlands, pp. 229–239.Search in Google Scholar

Sellgren, A., Wilson, K.C., 2007. Validation of a four-component pipeline friction-loss model. In: Proc. Hydrotransport 17, Cape Town, South Africa, pp. 193–204.Search in Google Scholar

Sellgren, A., Visintainer, R., Furlan, J., Matoušek, V., 2016. Pump and pipeline performance when pumping slurries with different particle gradings. CJChE, 94, 6, 1025–1031.10.1002/cjce.22489Search in Google Scholar

Slatter, P.T., 1999. The role of rheology in the pipelining of mineral slurries. Mineral Processing and Extractive Metallurgy, 20, 1, 281–300.10.1080/08827509908962478Search in Google Scholar

Swamee, P.K., Aggarwal, N., 2011. Explicit equations for laminar flow of Herschel-Bulkley fluids. CJChE, 89, 6, 1426–1433.10.1002/cjce.20484Search in Google Scholar

Visintainer, R., Furlan, J., McCall, G., Sellgren, A., Matoušek, V., 2017. Comprehensive loop testing of a broadly graded (4-component) slurry. In: Proc. Hydrotransport 20, Melbourne, Australia, pp. 307–323.Search in Google Scholar

Vlasák, P., Chára, Z., Kysela, B., Sobota, J., 2011. Flow behaviour of coarse-grained slurries in pipes. In: Proc. 9th ISOPE, Maui, Hawaii, USA, pp. 158–164.Search in Google Scholar

Wilson, K.C., 1979. Deposition-limit nomograms for particles of various densities in pipeline flow. In: Proc. Hydrotransport 6, pp. 1–12.Search in Google Scholar

Wilson, K.C., 1986. Effect of solids concentration on deposit velocity. Journal of Pipelines, 5, 4, 251–257.Search in Google Scholar

Wilson, K.C., Thomas, A.D., 1985. A new analysis of the turbulent flow of non-Newtonian fluids. CJChe, 63, 4, 539–546.10.1002/cjce.5450630403Search in Google Scholar

Wilson, K.C., Clift, R., Addie, G.R., Maffett, J., 1990. Effect of broad particle grading on slurry stratification ratio and scale-up. Pow-tech., 61, 165–172.10.1016/0032-5910(90)80151-NSearch in Google Scholar

Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R., 1997. Slurry transport using centrifugal pumps. 2nd Edition. Blackie Academic & Professional, London, 432 p.Search in Google Scholar

eISSN:
0042-790X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere