Zitieren

Clift, R., Clift, D.H.M., 1981. Continuous measurement of the density of flowing slurries. International Journal of Multiphase Flow, 7, 5, 555–561.10.1016/0301-9322(81)90058-6Search in Google Scholar

Doron, M., Simkhis, M., Barnea, D., 1997. Flow of solid-liquid mixtures in inclined pipes. International Journal of Multiphase Flow, 23, 313–323.10.1016/S0301-9322(97)80946-9Search in Google Scholar

Durand, R., Condolios, E., 1952. Étude expérimentale du refoulement des matériaux en conduite. 2émes Journées de l´Hydralique, SHF, Grenoble.Search in Google Scholar

Gillies, R.G., Schaan, J., Summer, R.J., Mc Kibben, M.J., Shook, C.A., 2000. Deposition velocities for Newtonian Slurries in Turbulent Flow. Can. J. Chemical Engineering, 78, 704–708.10.1002/cjce.5450780412Search in Google Scholar

De Hoog, E., in’t Veld, M., Van Wijk, J., Talmon, A., 2017. An experimental study into flow assurance of coarse inclined slurries. In: Proceedings of 18th Transport and Sedimentation of Solids Particles, Prague, Czech Republic, pp. 113–120.Search in Google Scholar

Kao, D.T.Y., Hwang, L.Y., 1979. Critical slope for slurry pipeline transporting coal and other solid particles. In: Proc. HYDROTRANSPORT, Canterbury, UK, Pap A5, pp. 57–74.Search in Google Scholar

Krupicka, J., Matousek, V., 2014. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps. Journal of Hydrology and Hydromechanics, 62, 2, 126–132.10.2478/johh-2014-0012Search in Google Scholar

Matousek, V., 1996. Internal structure of slurry flow in inclined pipe. Experiments and mechanistic modelling. In: Proc. HYDROTRANSPORT 13, BHRG, Cranfield, UK, pp. 187–210.Search in Google Scholar

Matousek, V., Krupicka, J., Kesely, M., 2018a. A layered model for inclined pipe flow of settling slurry. Powder Technology, 333, 317–326.10.1016/j.powtec.2018.04.021Search in Google Scholar

Matousek, V., Kesely, M., Chara, Z., 2019a. Effect of pipe inclination on internal structure of settling surry flow at and close to deposition limit. Powder Technology, 343, 533–541.10.1016/j.powtec.2018.11.035Search in Google Scholar

Matousek, V., Kesely, M., Konfst, J., Vlasak, P., 2018b. Effect of pipe inclination on settling slurry flow near deposition velocity. In: Proc. ASME 2018 5th Joint US-European Fluids Engineering Summer Conference, Montreal, Canada, paper FEDSM2018-83423.Search in Google Scholar

Matousek, V., Zrostlik, S., 2018. Laboratory testing of granular kinetic theory for intense bed load transport. Journal of Hydrology and Hydromechanics, 66, 3, 330–336.10.2478/johh-2018-0012Search in Google Scholar

Messa, G.V., De Lima Branco, R., Filho, J.G.D., Malavasi, S., 2018. A combined CFD-experimental method for abrasive erosion testing of concrete. Journal of Hydrology and Hydromechanics, 66, 1, 121–128.10.1515/johh-2017-0042Search in Google Scholar

Michalik, A., 1973. Density patterns of the inhomogeneous liquids in the industrial pipe-lines measured by means of radiometric scanning. La Houille Blanche, 1, 53–57.10.1051/lhb/1973003Search in Google Scholar

Parzonka, W., Kenchinton, J.M., Charles, M.E., 1981. Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on deposit velocity. The Canadian Journal of Chemical Engineering, 59, 3, 291–296.10.1002/cjce.5450590305Search in Google Scholar

Przewlocki, K., Michalik, A., Korbel, K., Wolski, K., Parzonka, W., Sobota, J., Pac-Pomarnacka, M., 1979. A radiometric device for the determination of solids concentration distribution in a pipeline. In: Proc. HYDROTRANSPORT 6, Pap B3, pp. 105–112.Search in Google Scholar

Shook, C.A., Roco, M.C., 1991. Slurry Flow. Principles and Practice. Butterworth-Heinemann, Stoneham, USA.Search in Google Scholar

Sobota, J., Plewa, F., 2000. Global and local characteristics of ash mixture flows. Electronic Journal of Polish Agricultural Universities, 3, 2, #01.Search in Google Scholar

Spelay, R.B., Gillies, R.G., Hashemi, S.A., Sanders, R.S., 2016. Effect of pipe inclination on the deposition velocity of settling slurries. The Canadian Journal of Chemical Engineering, 94, 1032–1039.10.1002/cjce.22493Search in Google Scholar

Vlasak, P., Chara, Z., Konfrst, J., 2017. Flow behaviour and local concentration of course particles-water mixture in inclined pipes. Journal of Hydrology and Hydromechanics, 65, 2, 183–191.10.1515/johh-2017-0001Search in Google Scholar

Vlasak, P., Chara, Z., Krupicka, J., Konfrst, J., 2014. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. Journal of Hydrology and Hydromechanics, 62, 3, 241–247.10.2478/johh-2014-0022Search in Google Scholar

Vlasak, P., Chara, Z., Konfrst, J., Krupicka, J., 2016. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe. Canadian Journal of Chemical Engineering, 94, 1040–1047.10.1002/cjce.22484Search in Google Scholar

Vlasak, P., Chara, Z., Matousek, V., Kesely, M., Konfrst, J., 2018a. Experimental investigation of settling slurry flow in inclined pipe sections. In: Proc. 24th Int. Conf. Eng. Mech., Svratka, Czech Republic, Pap. #64, pp. 909–912.Search in Google Scholar

Vlasak, P., Chara, Z., Matousek, V., Konfrst, J., Kesely, M., 2018b. Effect of pipe inclination on flow behaviour of finegrained settling slurry. In: Proc. Experimental fluid mechanics 2018,, Prague, Czech Republic, pp. 664–670.Search in Google Scholar

Vlasak, P., Chara, Z., Matousek, V., Konfrst, J., Kesely, M., 2019a. Experimental investigation of fine-grained settling slurry flow behaviour in inclined pipe sections. Journal of Hydrology and Hydromechanics, 67, 2, 113–120.10.2478/johh-2018-0039Search in Google Scholar

Vlasak, P., Chara, Z., Matousek, V., Kesely, M., Konfrst, J., Mildner, M., 2019b. Effect of pipe inclination on local concentration and flow behaviour of settling slurry. In: Proc. 25th Int. Conf. Eng. Mech., Svratka, Czech Republic, pp. 391–394.Search in Google Scholar

Vlasak, P., Chara, Z., Matousek, V., Kesely, M., Krupicka, J., Konfrst, J., 2019c. Local concentration distribution of settling slurry flow in inclined pipe sections. In: Proc. 19th Int. Conf. on Transport and Sedimentation of Solid Particles, Cape Town, S. Africa, pp. 229–236.Search in Google Scholar

Wilson, K.C., 1976. A unified physically based analysis of solid-liquid pipeline flow. In: Stephens, H.S., Streat, M., Clark, J., Coles, N.G. (eds.): Proc. HYDROTRANSPORT 4 B.H.R.A., Cranfield, UK, Pap. A1, pp. 1–16.Search in Google Scholar

Wilson, K.C. Tse, J.K.P., 1984. Deposition limit for coarseparticle transport in inclined pipes. In: Proc. HYDROTRANSPORT 9, BHRA Fluid Engineering, Cranfield, UK, pp. 149–161.Search in Google Scholar

Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R., 2006. Slurry Transport Using Centrifugal Pumps. Springer, US.Search in Google Scholar

Worster, R.C., Denny, D.F., 1955. Hydraulic transport of solid materials in pipelines. P. I. Mech. Eng., 169, 563–586.10.1243/PIME_PROC_1955_169_064_02Search in Google Scholar

eISSN:
1338-4333
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere