This work is licensed under the Creative Commons Attribution 4.0 International License.
Campa F, Gobbo LA, Stagi S, Cyrino LT, Toselli S, Marini E & Coratella G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. European Journal of Applied Physiology 2022;122(3):561-589. https://doi.org/10.1007/s00421-021-04879-yCampaFGobboLAStagiSCyrinoLTToselliSMariniECoratellaG.Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. European Journal of Applied Physiology2022;122(3):561–589. https://doi.org/10.1007/s00421-021-04879-ySearch in Google Scholar
Orsso CE, González MC, Maisch MJ, Haqq AM & Prado CM. Using bioelectrical impedance analysis in children and adolescents: Pressing issues. European Journal of Clinical Nutrition 2022;76(5):659-665. https://doi.org/10.1038/s41430-021-01018-w.OrssoCEGonzálezMCMaischMJHaqqAMPradoCM.Using bioelectrical impedance analysis in children and adolescents: Pressing issues. European Journal of Clinical Nutrition2022;76(5):659–665. https://doi.org/10.1038/s41430-021-01018-w.Search in Google Scholar
Moonen HPFX & Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Current Opinion in Critical Care 2021;27(4):344. https://doi.org/10.1097/MCC.0000000000000840MoonenHPFXVan ZantenARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Current Opinion in Critical Care2021;27(4):344. https://doi.org/10.1097/MCC.0000000000000840Search in Google Scholar
Ceniccola GD, Castro MG, Piovacari SMF, Horie LM, Corrêa FG, Barrere APN & Toledo DO. Current technologies in body composition assessment: advantages and disadvantages. Nutrition 2019;62:25-31. https://doi.org/10.1016/j.nut.2018.11.028CeniccolaGDCastroMGPiovacariSMFHorieLMCorrêaFGBarrereAPNToledoDO.Current technologies in body composition assessment: advantages and disadvantages. Nutrition2019;62:25–31. https://doi.org/10.1016/j.nut.2018.11.028Search in Google Scholar
Ward LC. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition 2019;73(2):194-199. https://doi.org/10.1038/s41430-018-0335-3.WardLC.Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition2019;73(2):194–199. https://doi.org/10.1038/s41430-018-0335-3.Search in Google Scholar
Silva AM, Campa F, Stagi S, Gobbo LA, Buffa R, Toselli S, et al. The bioelectrical impedance analysis (BIA) international database: aims, scope, and call for data. European Journal of Clinical Nutrition 2023;77(12):1143-1150. https://doi.org/10.1038/s41430-023-01310-xSilvaAMCampaFStagiSGobboLABuffaRToselliSet al.The bioelectrical impedance analysis (BIA) international database: aims, scope, and call for data. European Journal of Clinical Nutrition2023;77(12):1143–1150. https://doi.org/10.1038/s41430-023-01310-xSearch in Google Scholar
Szeszulski J, Lorenzo E, Arriola A & Lee RE. Community-Based Measurement of Body Composition in Hispanic Women: Concurrent Validity of Dual-and Single-Frequency Bioelectrical Impedance. Journal of Strength and Conditioning Research 2022;36(2):577-584. https://doi.org/10.1519/JSC.0000000000003483.SzeszulskiJLorenzoEArriolaALeeRE.Community-Based Measurement of Body Composition in Hispanic Women: Concurrent Validity of Dual-and Single-Frequency Bioelectrical Impedance. Journal of Strength and Conditioning Research2022;36(2):577–584. https://doi.org/10.1519/JSC.0000000000003483.Search in Google Scholar
Blue MN, Tinsley GM, Hirsch KR, Ryan ED, Ng BK & Smith-Ryan AE. Validity of total body water measured by multi-frequency bioelectrical impedance devices in a multi-ethnic sample. Clinical Nutrition ESPEN 2023;54:187-193. https://doi.org/10.1016/j.clnesp.2023.01.026BlueMNTinsleyGMHirschKRRyanEDNgBKSmith-RyanAE.Validity of total body water measured by multi-frequency bioelectrical impedance devices in a multi-ethnic sample. Clinical Nutrition ESPEN2023;54:187–193. https://doi.org/10.1016/j.clnesp.2023.01.026Search in Google Scholar
Karava V, Stabouli S, Dotis J, Liakopoulos V, Papachristou F & Printza N. Tracking hydration status changes by bioimpedance spectroscopy in children on peritoneal dialysis. Peritoneal Dialysis International 2021;41(2):217-225. https://doi.org/10.1177/0896860820945813KaravaVStabouliSDotisJLiakopoulosVPapachristouFPrintzaN.Tracking hydration status changes by bioimpedance spectroscopy in children on peritoneal dialysis. Peritoneal Dialysis International2021;41(2):217–225. https://doi.org/10.1177/0896860820945813Search in Google Scholar
Thanapholsart J, Khan E & Lee GA. A Current Review of the Uses of Bioelectrical Impedance Analysis and Bioelectrical Impedance Vector Analysis in Acute and Chronic Heart Failure Patients: An Under-valued Resource? Biological Research for Nursing 2023;25(2):240-249. https://doi.org/10.1177/10998004221132838ThanapholsartJKhanELeeGA.A Current Review of the Uses of Bioelectrical Impedance Analysis and Bioelectrical Impedance Vector Analysis in Acute and Chronic Heart Failure Patients: An Under-valued Resource?Biological Research for Nursing2023;25(2):240–249. https://doi.org/10.1177/10998004221132838Search in Google Scholar
AlDisi R, Bader Q & Bermak A. Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors 2022;22(17):6350. https://doi.org/10.3390/s22176350AlDisiRBaderQBermakA.Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors2022;22(17):6350. https://doi.org/10.3390/s22176350Search in Google Scholar
Matthews EL & Hosick PA. Bioelectrical impedance analysis does not detect an increase in total body water following isotonic fluid consumption. Applied Physiology, Nutrition, and Metabolism 2019;44(10):1116-1120. https://doi.org/10.1139/apnm-2019-0106MatthewsELHosickPA.Bioelectrical impedance analysis does not detect an increase in total body water following isotonic fluid consumption. Applied Physiology, Nutrition, and Metabolism2019;44(10):1116–1120. https://doi.org/10.1139/apnm-2019-0106Search in Google Scholar
Sullivan PA, Still CD, Jamieson ST, Dixon CB, Irving BA & Andreacci JL. Evaluation of multi‐frequency bioelectrical impedance analysis for the assessment of body composition in individuals with obesity. Obesity Science & Practice 2019;5(2):141-147. https://doi.org/10.1002/osp4.321SullivanPAStillCDJamiesonSTDixonCBIrvingBAAndreacciJL.Evaluation of multi‐frequency bioelectrical impedance analysis for the assessment of body composition in individuals with obesity. Obesity Science … Practice2019;5(2):141–147. https://doi.org/10.1002/osp4.321Search in Google Scholar
Park I, Lee JH, Jang DH, Kim J, Hwang BR, Kim S, Lee JE & Jo YH. Assessment of body water distribution in patients with sepsis during fluid resuscitation using multi-frequency direct segmental bioelectrical impedance analysis. Clinical Nutrition 2020;9(6):1826-1831. https://doi.org/10.1016/j.clnu.2019.07.022ParkILeeJHJangDHKimJHwangBRKimSLeeJEJoYH.Assessment of body water distribution in patients with sepsis during fluid resuscitation using multi-frequency direct segmental bioelectrical impedance analysis. Clinical Nutrition2020;9(6):1826–1831. https://doi.org/10.1016/j.clnu.2019.07.022Search in Google Scholar
Segar JL, Balapattabi K, Reho JJ, Grobe CC, Burnett CM & Grobe JL. Quantification of body fluid compartmentalization by combined time-domain nuclear magnetic resonance and bioimpedance spectroscopy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2021;320(1):R44-R54. https://doi.org/10.1152/ajpregu.00227.2020SegarJLBalapattabiKRehoJJGrobeCCBurnettCMGrobeJL.Quantification of body fluid compartmentalization by combined time-domain nuclear magnetic resonance and bioimpedance spectroscopy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology2021;320(1):R44–R54. https://doi.org/10.1152/ajpregu.00227.2020Search in Google Scholar
Accardi AJ, Matsubara BS, Gaw RL, Daleiden-Burns A & Heywood JT. Clinical Utility of Fluid Volume Assessment in Heart Failure Patients Using Bioimpedance Spectroscopy. Front Cardiovasc Med. 2021;7(8):636718. https://doi.org/10.3389/fcvm.2021.636718.AccardiAJMatsubaraBSGawRLDaleiden-BurnsAHeywoodJT.Clinical Utility of Fluid Volume Assessment in Heart Failure Patients Using Bioimpedance Spectroscopy. Front Cardiovasc Med.2021;7(8):636718. https://doi.org/10.3389/fcvm.2021.636718.Search in Google Scholar
Sandini M, Paiella S, Cereda M, Angrisani M, Capretti G, Casciani F, Famularo S, Giani A, Roccamatisi L, Viviani E, Caccialanza R, Montorsi M, Zerbi A, Bassi C & Gianotti L. Perioperative interstitial fluid expansion predicts major morbidity following pancreatic surgery: appraisal by bioimpedance vector analysis. Annals of Surgery 2019;270(5):923-929. https://doi.org/10.1097/SLA.0000000000003536SandiniMPaiellaSCeredaMAngrisaniMCaprettiGCascianiFFamularoSGianiARoccamatisiLVivianiECaccialanzaRMontorsiMZerbiABassiCGianottiL.Perioperative interstitial fluid expansion predicts major morbidity following pancreatic surgery: appraisal by bioimpedance vector analysis. Annals of Surgery2019;270(5):923–929. https://doi.org/10.1097/SLA.0000000000003536Search in Google Scholar
Wells JC, Williams JE, Ward LC & Fewtrell MS. Utility of specific bioelectrical impedance vector analysis for the assessment of body composition in children. Clinical Nutrition 2021;40(3):1147-1154. https://doi.org/10.1016/j.clnu.2020.07.022WellsJCWilliamsJEWardLCFewtrellMS.Utility of specific bioelectrical impedance vector analysis for the assessment of body composition in children. Clinical Nutrition2021;40(3):1147–1154. https://doi.org/10.1016/j.clnu.2020.07.022Search in Google Scholar
Stagi S, Silva AM, Jesus F, Campa F, Cabras S, Earthman CP & Marini E. Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children. Clinical Nutrition 2022;41(3):673-679. https://doi.org/10.1016/j.clnu.2022.01.021StagiSSilvaAMJesusFCampaFCabrasSEarthmanCPMariniE.Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children. Clinical Nutrition2022;41(3):673–679. https://doi.org/10.1016/j.clnu.2022.01.021Search in Google Scholar
Davydov DM, Boev A & Gorbunov S. Making the choice between bioelectrical impedance measures for body hydration status assessment. Scientific Reports 2021;11(1):7685. https://doi.org/10.1038/s41598-021-87253-4DavydovDMBoevAGorbunovS.Making the choice between bioelectrical impedance measures for body hydration status assessment. Scientific Reports2021;11(1):7685. https://doi.org/10.1038/s41598-021-87253-4Search in Google Scholar
Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S & Ellershaw J. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin Nutr ESPEN. 2019;30:59-66. https://doi.org/10.1016/j.clnesp.2019.02.006NwosuACMaylandCRMasonSCoxTFVarroAStanleySEllershawJ.Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin Nutr ESPEN.2019;30:59–66. https://doi.org/10.1016/j.clnesp.2019.02.006Search in Google Scholar
Hong R & Xu B. Breast cancer: an up‐to‐date review and future perspectives. Cancer Communications 2022;42(10):913-936. https://doi.org/10.1002/cac2.12358HongRXuB.Breast cancer: an up‐to‐date review and future perspectives. Cancer Communications2022;42(10):913–936. https://doi.org/10.1002/cac2.12358Search in Google Scholar
Jaimes-Morales SA, Aguirre-Cardona VE & Gonzalez-Correa CA. Ex vivo electrical bioimpedance measurements and Cole modelling on the porcine colon and rectum. Scientific Reports, 2024;14(1):21266. https://doi.org/10.1038/s41598-024-72270-wJaimes-MoralesSAAguirre-CardonaVEGonzalez-CorreaCA.Ex vivo electrical bioimpedance measurements and Cole modelling on the porcine colon and rectum. Scientific Reports,2024;14(1):21266. https://doi.org/10.1038/s41598-024-72270-wSearch in Google Scholar
Fu B & Freeborn TJ. Cole-impedance parameters representing biceps tissue bioimpedance in healthy adults and their alterations following eccentric exercise. Journal of Advanced Research, 2020;25:285-293. https://doi.org/10.1016/j.jare.2020.05.016FuBFreebornTJ.Cole-impedance parameters representing biceps tissue bioimpedance in healthy adults and their alterations following eccentric exercise. Journal of Advanced Research,2020;25:285–293. https://doi.org/10.1016/j.jare.2020.05.016Search in Google Scholar
Piccoli A & Pastori G. BIVA software 2002. Department of Medical and Surgical Sciences, University of Padova: Padova, Italy, 2002;1-17. Available from: BIVAguide.pdf (renalgate.it)PiccoliAPastoriG.BIVA software 2002. Department of Medical and Surgical Sciences, University of Padova: Padova, Italy, 2002;1-17. Available from: BIVAguide.pdf (renalgate.it)Search in Google Scholar
Román AC, Lara A, Morales R, Marañón M, Castillo J, Pérez L. Base de datos de la caracterización de los parámetros bioeléctricos por métodos de bioimpedancia eléctrica. 2021. ISBN: 978-959-207-679-2 (Digital format)RománACLaraAMoralesRMarañónMCastilloJPérezL.Base de datos de la caracterización de los parámetros bioeléctricos por métodos de bioimpedancia eléctrica. 2021. ISBN: 978-959-207-679-2 (Digital format)Search in Google Scholar
Hankinson SJ, Williams CH, Ton VK, Gottlieb SS & Hong CC. Should we overcome the resistance to bioelectrical impedance in heart failure? Expert Review of Medical Devices 2020;17(8):785-794. https://doi.org/10.1080/17434440.2020.1791701HankinsonSJWilliamsCHTonVKGottliebSSHongCC.Should we overcome the resistance to bioelectrical impedance in heart failure?Expert Review of Medical Devices2020;17(8):785–794. https://doi.org/10.1080/17434440.2020.1791701Search in Google Scholar
Morlino D, Cioffi I, Marra M, Di Vincenzo O, Scalfi L & Pasanisi F. Bioelectrical Phase Angle in Patients with Breast Cancer: A Systematic Review. Cancers (Basel). 2022;14(8):2002. https://doi.org/10.3390/cancers14082002MorlinoDCioffiIMarraMDi VincenzoOScalfiLPasanisiF.Bioelectrical Phase Angle in Patients with Breast Cancer: A Systematic Review. Cancers (Basel). 2022;14(8):2002. https://doi.org/10.3390/cancers14082002Search in Google Scholar
Zhang X, Zhang J, Du Y, Wu X, Chang Y, Li W, Liu Y, Hu W & Zhao J. The clinical application value of phase angle of six parts in nutritional evaluation of tumor patients. Support Care Cancer. 2022;30(10):7983-7989. https://doi.org/10.1007/s00520-022-07240-xZhangXZhangJDuYWuXChangYLiWLiuYHuWZhaoJ.The clinical application value of phase angle of six parts in nutritional evaluation of tumor patients. Support Care Cancer. 2022;30(10):7983–7989. https://doi.org/10.1007/s00520-022-07240-xSearch in Google Scholar
Amano K, Bruera E & Hui D. Diagnostic and prognostic utility of phase angle in patients with cancer. Rev Endocr Metab Disord. 2023;24(3):479-489. https://doi.org/10.1007/s11154-022-09776-zAmanoKBrueraEHuiD.Diagnostic and prognostic utility of phase angle in patients with cancer. Rev Endocr Metab Disord. 2023;24(3):479–489. https://doi.org/10.1007/s11154-022-09776-zSearch in Google Scholar
Shi J, Xie H, Ruan G, Ge Y, Lin S, Zhang H, Zheng X, Liu C, Song M, Liu T, Zhang X, Yang M, Liu X, Zhang Q, Deng L, Wang X & Shi H. Sex differences in the association of phase angle and lung cancer mortality. Front Nutr. 2022;9:1061996. https://doi.org/10.3389/fnut.2022.1061996ShiJXieHRuanGGeYLinSZhangHZhengXLiuCSongMLiuTZhangXYangMLiuXZhangQDengLWangXShiH.Sex differences in the association of phase angle and lung cancer mortality. Front Nutr. 2022;9:1061996. https://doi.org/10.3389/fnut.2022.1061996Search in Google Scholar
Mohamud A, Høgdall C, Schnack T. Prognostic value of the 2018 FIGO staging system for cervical cancer. Gynecol Oncol. 2022;165(3):506-513. https://doi.org/10.1016/j.ygyno.2022.02.017MohamudAHøgdallCSchnackT.Prognostic value of the 2018 FIGO staging system for cervical cancer. Gynecol Oncol. 2022;165(3):506–513. https://doi.org/10.1016/j.ygyno.2022.02.017Search in Google Scholar
Van Kol KGG, Ebisch RMF, van der Aa M, Wenzel HB, Piek JMJ & Bekkers RLM. The prognostic value of the presence of pelvic and/or para-aortic lymph node metastases in cervical cancer patients; the influence of the new FIGO classification (stage IIIC). Gynecol Oncol. 2023;171:9-14. https://doi.org/10.1016/j.ygyno.2023.01.023Van KolKGGEbischRMFvan der AaMWenzelHBPiekJMJBekkersRLM.The prognostic value of the presence of pelvic and/or para-aortic lymph node metastases in cervical cancer patients; the influence of the new FIGO classification (stage IIIC). Gynecol Oncol. 2023;171:9–14. https://doi.org/10.1016/j.ygyno.2023.01.023Search in Google Scholar
Lecointre L, Lodi M, Molière S, Gantzer J, Eberst L, Menoux I, Le Van Quyen P, Averous G, Akladios C & Baldauf JJ. Tratamiento del cáncer de cuello uterino en estadio III y IV. EMC-Ginecología-Obstetricia 2023;59(1):1-19. https://doi.org/10.1016/S1283-081X(22)47432-7LecointreLLodiMMolièreSGantzerJEberstLMenouxILe Van QuyenPAverousGAkladiosCBaldaufJJ.Tratamiento del cáncer de cuello uterino en estadio III y IV. EMC-Ginecología-Obstetricia2023;59(1):1–19. https://doi.org/10.1016/S1283-081X(22)47432-7Search in Google Scholar
D’Oria O, Corrado G, Laganà AS, Chiantera V, Vizza E & Giannini A. New Advances in Cervical Cancer: From Bench to Bedside. International Journal of Environmental Research and Public Health 2022;19(12):7094. https://doi.org/10.3390/ijerph19127094D’OriaOCorradoGLaganàASChianteraVVizzaEGianniniA.New Advances in Cervical Cancer: From Bench to Bedside. International Journal of Environmental Research and Public Health2022;19(12):7094. https://doi.org/10.3390/ijerph19127094Search in Google Scholar
Cho WK, Park W, Kim H, Kim YJ & Kim YS. Is the pathologic tumor size associated with survival in early cervical cancer treated with radical hysterectomy and adjuvant radiotherapy? Taiwan J Obstet Gynecol. 2022;61(2):329-332. https://doi.org/10.1016/j.tjog.2022.02.023ChoWKParkWKimHKimYJKimYS.Is the pathologic tumor size associated with survival in early cervical cancer treated with radical hysterectomy and adjuvant radiotherapy?Taiwan J Obstet Gynecol. 2022;61(2):329–332. https://doi.org/10.1016/j.tjog.2022.02.023Search in Google Scholar
Tokalioglu AA, Kilic C, Oktar O, Kilic F, Cakir C, Yuksel D, Comert GK, Korkmaz V & Turan T. Oncologic outcome in patients with 2018 FIGO stage IB cervical cancer: Is tumor size important? J Obstet Gynaecol Res. 2023;49(2):709-716. https://doi.org/10.1111/jog.15505TokaliogluAAKilicCOktarOKilicFCakirCYukselDComertGKKorkmazVTuranT.Oncologic outcome in patients with 2018 FIGO stage IB cervical cancer: Is tumor size important?J Obstet Gynaecol Res. 2023;49(2):709–716. https://doi.org/10.1111/jog.15505Search in Google Scholar
Liu C, Tian M, Pei H, Tan F & Li Y. Prognostic Value of the N1c in Stage III and IV Colorectal Cancer: A Propensity Score Matching Study Based on the Surveillance, Epidemiology, and End Results (SEER) Database. J Invest Surg. 2022;35(4):850-859. https://doi.org/10.1080/08941939.2021.1925787LiuCTianMPeiHTanFLiY.Prognostic Value of the N1c in Stage III and IV Colorectal Cancer: A Propensity Score Matching Study Based on the Surveillance, Epidemiology, and End Results (SEER) Database. J Invest Surg. 2022;35(4):850–859. https://doi.org/10.1080/08941939.2021.1925787Search in Google Scholar
Chen H, Yin S, Xiong Z, Li X, Zhang F, Chen X, Guo J, Xie M, Mao C, Jin L & Lian L. Clinicopathologic characteristics and prognosis of synchronous colorectal cancer: a retrospective study. BMC Gastroenterol. 2022;22(1):120. https://doi.org/10.1186/s12876-022-02153-9ChenHYinSXiongZLiXZhangFChenXGuoJXieMMaoCJinLLianL.Clinicopathologic characteristics and prognosis of synchronous colorectal cancer: a retrospective study. BMC Gastroenterol. 2022;22(1):120. https://doi.org/10.1186/s12876-022-02153-9Search in Google Scholar
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J & Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022;72(4):372-401. https://doi.org/10.3322/caac.21728CiardielloFCiardielloDMartiniGNapolitanoSTaberneroJCervantesA.Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022;72(4):372–401. https://doi.org/10.3322/caac.21728Search in Google Scholar
Van der Meer R, Bakkers C, van Erning FN, Simkens LHJ, de Hingh IHJT & Roumen RMH. A propensity score-matched analysis of oncological outcome after systemic therapy for stage IV colorectal cancer: Impact of synchronous ovarian metastases. Int J Cancer. 2023;152(6):1174-1182. https://doi.org/10.1002/ijc.34325Van der MeerRBakkersCvan ErningFNSimkensLHJde HinghIHJTRoumenRMH.A propensity score-matched analysis of oncological outcome after systemic therapy for stage IV colorectal cancer: Impact of synchronous ovarian metastases. Int J Cancer. 2023;152(6):1174–1182. https://doi.org/10.1002/ijc.34325Search in Google Scholar
Wang J, Li S, Liu Y, Zhang C, Li H & Lai B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020;9(1):361-373. https://doi.org/10.1002/cam4.2673WangJLiSLiuYZhangCLiHLaiB.Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020;9(1):361–373. https://doi.org/10.1002/cam4.2673Search in Google Scholar
Law ML. Cancer cachexia: Pathophysiology and association with cancer-related pain. Front Pain Res (Lausanne). 2022;3:971295. https://doi.org/10.3389/fpain.2022.971295LawML.Cancer cachexia: Pathophysiology and association with cancer-related pain. Front Pain Res (Lausanne). 2022;3:971295. https://doi.org/10.3389/fpain.2022.971295Search in Google Scholar
Shah UA, Ballinger TJ, Bhandari R, Dieli-Cornwright CM, Guertin KA, Hibler EA, Kalam F, Lohmann AE & Ippolito JE. Imaging modalities for measuring body composition in patients with cancer: opportunities and challenges. J Natl Cancer Inst Monogr. 2023;2023(61):56-67. https://doi.org/10.1093/jncimonographs/lgad001ShahUABallingerTJBhandariRDieli-CornwrightCMGuertinKAHiblerEAKalamFLohmannAEIppolitoJE.Imaging modalities for measuring body composition in patients with cancer: opportunities and challenges. J Natl Cancer Inst Monogr. 2023;2023(61):56–67. https://doi.org/10.1093/jncimonographs/lgad001Search in Google Scholar
Pena NF, Mauricio SF, Rodrigues AMS, Carmo AS, Coury NC, Correia MITD, Generoso SV. Association between standardized phase angle, nutrition status, and clinical outcomes in surgical cancer patients. Nutr Clin Pract. 2019;34(3):381-386. https://doi.org/10.1002/ncp.10110PenaNFMauricioSFRodriguesAMSCarmoASCouryNCCorreiaMITDGenerosoSV.Association between standardized phase angle, nutrition status, and clinical outcomes in surgical cancer patients. Nutr Clin Pract. 2019;34(3):381–386. https://doi.org/10.1002/ncp.10110Search in Google Scholar
Jiang N, Zhang J, Cheng S & Liang B. The role of standardized phase angle in the assessment of nutritional status and clinical outcomes in cancer patients: a systematic review of the literature. Nutrients 2022;15(1):50. https://doi.org/10.3390/nu15010050JiangNZhangJChengSLiangB.The role of standardized phase angle in the assessment of nutritional status and clinical outcomes in cancer patients: a systematic review of the literature. Nutrients2022;15(1):50. https://doi.org/10.3390/nu15010050Search in Google Scholar
Ward LC & Brantlov S. Bioimpedance basics and phase angle fundamentals. Reviews in Endocrine and Metabolic Disorders 2023;24(3):381-391. https://doi.org/10.1007/s11154-022-09780-3WardLCBrantlovS.Bioimpedance basics and phase angle fundamentals. Reviews in Endocrine and Metabolic Disorders2023;24(3):381–391. https://doi.org/10.1007/s11154-022-09780-3Search in Google Scholar
Pereira MME, Queiroz MDSC, de Albuquerque NMC, Rodrigues J, Wiegert EVM, Calixto-Lima L & de Oliveira LC. The prognostic role of phase angle in advanced cancer patients: a systematic review. Nutr Clin Pract. 2018;33(6):813-824. https://doi.org/10.1002/ncp.10100PereiraMMEQueirozMDSCde AlbuquerqueNMCRodriguesJWiegertEVMCalixto-LimaLde OliveiraLC.The prognostic role of phase angle in advanced cancer patients: a systematic review. Nutr Clin Pract. 2018;33(6):813–824. https://doi.org/10.1002/ncp.10100Search in Google Scholar
Hui D, Moore J, Park M, Liu D & Bruera E. Phase Angle and the Diagnosis of Impending Death in Patients with Advanced Cancer: Preliminary Findings. The Oncologist 2019;24(6):e365-e373. https://doi.org/10.1634/theoncologist.2018-0288HuiDMooreJParkMLiuDBrueraE.Phase Angle and the Diagnosis of Impending Death in Patients with Advanced Cancer: Preliminary Findings. The Oncologist2019;24(6):e365–e373. https://doi.org/10.1634/theoncologist.2018-0288Search in Google Scholar
Moqadam SM, Grewal PK, Haeri Z, Ingledew PA, Kohli K & Golnaraghi F. Cancer detection based on electrical impedance spectroscopy: a clinical study. J Electr Bioimpedance 2018;9(1):17-23. https://doi.org/10.2478/joeb-2018-0004MoqadamSMGrewalPKHaeriZIngledewPAKohliKGolnaraghiF.Cancer detection based on electrical impedance spectroscopy: a clinical study. J Electr Bioimpedance2018;9(1):17–23. https://doi.org/10.2478/joeb-2018-0004Search in Google Scholar
Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK & Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science Au 2022;2(6):495-516. https://doi.org/10.1021/acsmeasuresciau.2c00033AbasiSAggasJRGarayar-LeyvaGGWaltherBKGuiseppi-ElieA.Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science Au2022;2(6):495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033Search in Google Scholar
Catapano A, Trinchese G, Cimmino F, Petrella L, D’Angelo M, Di Maio G, Crispino M, Cavaliere G, Monda M & Mollica MP. Impedance Analysis to Evaluate Nutritional Status in Physiological and Pathological Conditions. Nutrients 2023;15(10):2264. https://doi.org/10.3390/nu15102264CatapanoATrincheseGCimminoFPetrellaLD’AngeloMDi MaioGCrispinoMCavaliereGMondaMMollicaMP.Impedance Analysis to Evaluate Nutritional Status in Physiological and Pathological Conditions. Nutrients2023;15(10):2264. https://doi.org/10.3390/nu15102264Search in Google Scholar