This work is licensed under the Creative Commons Attribution 4.0 International License.
M. Arnold et al., “Current and future burden of breast cancer: global statistics for 2020 and 2040,” The Breast, Dec. 2022, vol. 66, pp. 15–23. https://doi.org/10.1016/j.breast.2022.08.010ArnoldM. “Current and future burden of breast cancer: global statistics for 2020 and 2040,” The Breast, Dec. 2022, vol. 66, pp. 15–23. https://doi.org/10.1016/j.breast.2022.08.010Search in Google Scholar
E. Devolli-Disha, S. Manxhuka-Kërliu, H. Ymeri, and A. Kutllovci, “Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density,” Bosn J Basic Med Sci, May 2009, vol. 9, no. 2, pp. 131–136. https://doi.org/10.17305/bjbms.2009.2832Devolli-DishaE.Manxhuka-KërliuS.YmeriH.KutllovciA., “Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density,” Bosn J Basic Med Sci, May2009, vol. 9, no. 2, pp. 131–136. https://doi.org/10.17305/bjbms.2009.2832Search in Google Scholar
A. Carovac, F. Smajlovic, and D. Junuzovic, “Application of ultrasound in medicine,” Acta Informatica Medica, 2011, vol. 19, no. 3, p. 168. https://doi.org/10.5455/aim.2011.19.168-171CarovacA.SmajlovicF.JunuzovicD., “Application of ultrasound in medicine,” Acta Informatica Medica, 2011, vol. 19, no. 3, p. 168. https://doi.org/10.5455/aim.2011.19.168-171Search in Google Scholar
R. M. Mann et al., “Breast cancer screening in women with extremely dense breasts recommendations of the european society of breast imaging (eusobi),” Eur Radiol, Jun. 2022, vol. 32, no. 6, pp. 4036–4045. https://doi.org/10.1007/s00330-022-08617-6MannR. M. “Breast cancer screening in women with extremely dense breasts recommendations of the european society of breast imaging (eusobi),” Eur Radiol, Jun. 2022, vol. 32, no. 6, pp. 4036–4045. https://doi.org/10.1007/s00330-022-08617-6Search in Google Scholar
N. Goren et al., “Multi-frequency electrical impedance tomography and neuroimaging data in stroke patients,” Sci Data, Jul. 2018, vol. 5, no. 1, p. 180112. https://doi.org/10.1038/sdata.2018.112GorenN. “Multi-frequency electrical impedance tomography and neuroimaging data in stroke patients,” Sci Data, Jul. 2018, vol. 5, no. 1, p. 180112. https://doi.org/10.1038/sdata.2018.112Search in Google Scholar
L. Cao et al., “A novel time-difference electrical impedance tomography algorithm using multi-frequency information,” Biomed Eng Online, Dec. 2019, vol. 18, no. 1, p. 84. https://doi.org/10.1186/s12938-019-0703-9CaoL. “A novel time-difference electrical impedance tomography algorithm using multi-frequency information,” Biomed Eng Online, Dec. 2019, vol. 18, no. 1, p. 84. https://doi.org/10.1186/s12938-019-0703-9Search in Google Scholar
P. A. Sejati, B. Sun, P. N. Darma, T. Shirai, K. Narita, and M. Takei, “Multinode electrical impedance tomography (mnEIT) throughout whole-body electrical muscle stimulation (wbEMS),” IEEE Trans Instrum Meas, 2023, vol. 72, pp. 1–14. https://doi.org/10.1109/TIM.2023.3282295SejatiP. A.SunB.DarmaP. N.ShiraiT.NaritaK.TakeiM., “Multinode electrical impedance tomography (mnEIT) throughout whole-body electrical muscle stimulation (wbEMS),” IEEE Trans Instrum Meas, 2023, vol. 72, pp. 1–14. https://doi.org/10.1109/TIM.2023.3282295Search in Google Scholar
D. Holder, Electrical Impedance Tomography. CRC Press, 2004. https://doi.org/10.1201/9780367801595HolderD.Electrical Impedance Tomography. CRC Press, 2004. https://doi.org/10.1201/9780367801595Search in Google Scholar
M. Gutierrez-Lopez, J. Prado-Olivarez, J. Diaz-Carmona, C. A. Herrera-Ramírez, J. A. Gutierrez-Gnecchi, and C. G. Medina-Sánchez, “Electrical impedance-based methodology for locating carcinoma emulators on breast models,” J Sens, May 2019, vol. 2019, pp. 1–16. https://doi.org/10.1155/2019/8587191Gutierrez-LopezM.Prado-OlivarezJ.Diaz-CarmonaJ.Herrera-RamírezC. A.Gutierrez-GnecchiJ. A.Medina-SánchezC. G., “Electrical impedance-based methodology for locating carcinoma emulators on breast models,” J Sens, May2019, vol. 2019, pp. 1–16. https://doi.org/10.1155/2019/8587191Search in Google Scholar
J. C. Gomes, V. A. F. Barbosa, D. E. Ribeiro, R. E. de Souza, and W. P. dos Santos, “Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines,” Research on Biomedical Engineering, Dec. 2020, vol. 36, no. 4, pp. 399–410. https://doi.org/10.1007/s42600-020-00079-3GomesJ. C.BarbosaV. A. F.RibeiroD. E.de SouzaR. E.dos SantosW. P., “Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines,” Research on Biomedical Engineering, Dec. 2020, vol. 36, no. 4, pp. 399–410. https://doi.org/10.1007/s42600-020-00079-3Search in Google Scholar
A. J. Rao, E. K. Murphy, M. Shahghasemi, and K. M. Odame, “Current-conveyor-based wide-band current driver for electrical impedance tomography,” Physiol Meas, Apr. 2019, vol. 40, no. 3, p. 034005. https://doi.org/10.1088/1361-6579/ab0c3cRaoA. J.MurphyE. K.ShahghasemiM.OdameK. M., “Current-conveyor-based wide-band current driver for electrical impedance tomography,” Physiol Meas, Apr. 2019, vol. 40, no. 3, p. 034005. https://doi.org/10.1088/1361-6579/ab0c3cSearch in Google Scholar
A. Zarafshani, T. Bach, C. R. Chatwin, S. Tang, L. Xiang, and B. Zheng, “Conditioning electrical impedance mammography system,” Measurement, Feb. 2018, vol. 116, pp. 38–48. https://doi.org/10.1016/j.measurement.2017.10.052ZarafshaniA.BachT.ChatwinC. R.TangS.XiangL.ZhengB., “Conditioning electrical impedance mammography system,” Measurement, Feb. 2018, vol. 116, pp. 38–48. https://doi.org/10.1016/j.measurement.2017.10.052Search in Google Scholar
S. Hong et al., “A 4.9 mΩ-sensitivity mobile electrical impedance tomography ic for early breast-cancer detection system,” IEEE J Solid-State Circuits, Jan. 2015, vol. 50, no. 1, pp. 245–257. https://doi.org/10.1109/JSSC.2014.2355835HongS. “A 4.9 mΩ-sensitivity mobile electrical impedance tomography ic for early breast-cancer detection system,” IEEE J Solid-State Circuits, Jan. 2015, vol. 50, no. 1, pp. 245–257. https://doi.org/10.1109/JSSC.2014.2355835Search in Google Scholar
Y. Shi, X. He, M. Wang, B. Yang, F. Fu, and X. Kong, “Reconstruction of conductivity distribution with electrical impedance tomography based on hybrid regularization method,” Journal of Medical Imaging, Jun. 2021, vol. 8, no. 03. https://doi.org/10.1117/1.JMI.8.3.033503ShiY.HeX.WangM.YangB.FuF.KongX., “Reconstruction of conductivity distribution with electrical impedance tomography based on hybrid regularization method,” Journal of Medical Imaging, Jun. 2021, vol. 8, no. 03. https://doi.org/10.1117/1.JMI.8.3.033503Search in Google Scholar
J. Liu and F. Ciucci, “The gaussian process distribution of relaxation times: a machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data,” Electrochim Acta, Jan. 2020, vol. 331. https://doi.org/10.1016/j.electacta.2019.135316LiuJ.CiucciF., “The gaussian process distribution of relaxation times: a machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data,” Electrochim Acta, Jan. 2020, vol. 331. https://doi.org/10.1016/j.electacta.2019.135316Search in Google Scholar
I. N. Rifai, M. R. Baidillah, R. Wicaksono, S. Akita, and M. Takei, “Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT),” Biomed Phys Eng Express, Jul. 2023, vol. 9, no. 4, p. 045013. https://doi.org/10.1088/2057-1976/acd4c6RifaiI. N.BaidillahM. R.WicaksonoR.AkitaS.TakeiM., “Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT),” Biomed Phys Eng Express, Jul. 2023, vol. 9, no. 4, p. 045013. https://doi.org/10.1088/2057-1976/acd4c6Search in Google Scholar
B. Sun, M. R. Baidillah, P. N. Darma, T. Shirai, K. Narita, and M. Takei, “Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography,” Physiol Meas, Mar. 2021, vol. 42, no. 3, p. 035008. https://doi.org/10.1088/1361-6579/abe9ffSunB.BaidillahM. R.DarmaP. N.ShiraiT.NaritaK.TakeiM., “Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography,” Physiol Meas, Mar. 2021, vol. 42, no. 3, p. 035008. https://doi.org/10.1088/1361-6579/abe9ffSearch in Google Scholar
K. A. Ibrahim, P. A. Sejati, P. N. Darma, A. Nakane, and M. Takei, “Metal particle detection by integration of a generative adversarial network and electrical impedance tomography (GAN-EIT) for a wet-type gravity vibration separator,” Sensors, Sep. 2023, vol. 23, no. 19, p. 8062. https://doi.org/10.3390/s23198062IbrahimK. A.SejatiP. A.DarmaP. N.NakaneA.TakeiM., “Metal particle detection by integration of a generative adversarial network and electrical impedance tomography (GAN-EIT) for a wet-type gravity vibration separator,” Sensors, Sep. 2023, vol. 23, no. 19, p. 8062. https://doi.org/10.3390/s23198062Search in Google Scholar
P. C. Hansen and D. P. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM Journal on Scientific Computing, Nov. 1993, vol. 14, no. 6, pp. 1487–1503. https://doi.org/10.1137/0914086HansenP. C.O’LearyD. P., “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM Journal on Scientific Computing, Nov. 1993, vol. 14, no. 6, pp. 1487–1503. https://doi.org/10.1137/0914086Search in Google Scholar
M. R. Baidillah, A.-A. S. Iman, Y. Sun, and M. Takei, “Electrical impedance spectro-tomography based on dielectric relaxation model,” IEEE Sens J, Dec. 2017, vol. 17, no. 24, pp. 8251–8262. https://doi.org/10.1109/JSEN.2017.2710146BaidillahM. R.ImanA.-A. S.SunY.TakeiM., “Electrical impedance spectro-tomography based on dielectric relaxation model,” IEEE Sens J, Dec. 2017, vol. 17, no. 24, pp. 8251–8262. https://doi.org/10.1109/JSEN.2017.2710146Search in Google Scholar
B. Sun, P. N. Darma, K. Ikeda, T. Shirai, K. Narita, and M. Takei, “Relationship between fat thickness and current density magnitude in calf muscles compartments under electrical muscle stimulation (EMS) by coupling of electromagnetic simulation and electrical impedance tomography (ES-EIT),” J Vis (Tokyo), Dec. 2023, vol. 26, no. 6, pp. 1375–1388. https://doi.org/10.1007/s12650-023-00932-4SunB.DarmaP. N.IkedaK.ShiraiT.NaritaK.TakeiM., “Relationship between fat thickness and current density magnitude in calf muscles compartments under electrical muscle stimulation (EMS) by coupling of electromagnetic simulation and electrical impedance tomography (ES-EIT),” J Vis (Tokyo), Dec. 2023, vol. 26, no. 6, pp. 1375–1388. https://doi.org/10.1007/s12650-023-00932-4Search in Google Scholar
K. Sakai, P. N. Darma, P. A. Sejati, R. Wicaksono, H. Hayashi, and M. Takei, “Gastric functional monitoring by gastric electrical impedance tomography (geit) suit with dual-step fuzzy clustering,” Sci Rep, Jan. 2023, vol. 13, no. 1, p. 514. https://doi.org/10.1038/s41598-022-27060-7SakaiK.DarmaP. N.SejatiP. A.WicaksonoR.HayashiH.TakeiM., “Gastric functional monitoring by gastric electrical impedance tomography (geit) suit with dual-step fuzzy clustering,” Sci Rep, Jan. 2023, vol. 13, no. 1, p. 514. https://doi.org/10.1038/s41598-022-27060-7Search in Google Scholar
P. N. Darma, D. Kawashima, and M. Takei, “Gastric electrical impedance tomography (gEIT) based on a 3d jacobian matrix and dual-step fuzzy clustering post-processing,” IEEE Sens J, Jul. 2022, vol. 22, no. 14, pp. 14336–14346. https://doi.org/10.1109/JSEN.2022.3181052DarmaP. N.KawashimaD.TakeiM., “Gastric electrical impedance tomography (gEIT) based on a 3d jacobian matrix and dual-step fuzzy clustering post-processing,” IEEE Sens J, Jul. 2022, vol. 22, no. 14, pp. 14336–14346. https://doi.org/10.1109/JSEN.2022.3181052Search in Google Scholar
Hasgall PA et al., “Itis.swiss/database,” IT’IS Database for thermal and electromagnetic parameters of biological tissues. Web: https://itis.swiss/virtual-population/tissue-properties/database/tissue-frequency-chart/. Accessed 7th Aug 2024.HasgallPA “Itis.swiss/database,” IT’IS Database for thermal and electromagnetic parameters of biological tissues. Web: https://itis.swiss/virtual-population/tissue-properties/database/tissue-frequency-chart/. Accessed 7th Aug 2024.Search in Google Scholar
B. Brazey, Y. Haddab, and N. Zemiti, “Robust imaging using electrical impedance tomography: review of current tools,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Feb. 2022, vol. 478, no. 2258. https://doi.org/10.1098/rspa.2021.0713BrazeyB.HaddabY.ZemitiN., “Robust imaging using electrical impedance tomography: review of current tools,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Feb. 2022, vol. 478, no. 2258. https://doi.org/10.1098/rspa.2021.0713Search in Google Scholar