Uneingeschränkter Zugang

A high accuracy voltage approximation model based on object-oriented sensitivity matrix estimation (OO-SME model) in electrical impedance tomography


Zitieren

Brown BH. Medical impedance tomography and process impedance tomography : a brief review. Meas Sci Technol. 2001;12:991-6. https://doi.org/10.1088/0957-0233/12/8/301Brown BH Medical impedance tomography and process impedance tomography : a brief review Meas Sci Technol 200112991 6 https://doi.org/10.1088/0957-0233/12/8/30110.1088/0957-0233/12/8/301Search in Google Scholar

Sun B, Baidillah MR, Darma PN, Shirai T, Narita K, Takei M. Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography. Physiol Meas. 2021;42(3):35008. https://doi.org/10.1088/1361-6579/abe9ffSun B Baidillah MR Darma PN Shirai T Narita K Takei M Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography Physiol Meas 202142335008 https://doi.org/10.1088/1361-6579/abe9ff10.1088/1361-6579/abe9ff33631732Search in Google Scholar

Sun B, Darma PN, Shirai T, Narita K, Takei M. Electrical-tomographic imaging of physiological-induced conductive response in calf muscle compartments during voltage intensity change of electrical muscle stimulation (vic-EMS). Physiol Meas. 2021;42(9). https://doi.org/10.1088/1361-6579/ac2265Sun B Darma PN Shirai T Narita K Takei M Electrical-tomographic imaging of physiological-induced conductive response in calf muscle compartments during voltage intensity change of electrical muscle stimulation (vic-EMS) Physiol Meas 2021429 https://doi.org/10.1088/1361-6579/ac226510.1088/1361-6579/ac226534467954Search in Google Scholar

Chitturi V, Farrukh N. Spatial resolution in electrical impedance tomography : A topical review. J Electr Bioimpedance. 2017;8:66-78. https://doi.org/10.5617/jeb.3350Chitturi V Farrukh N Spatial resolution in electrical impedance tomography : A topical review J Electr Bioimpedance 2017866 78 https://doi.org/10.5617/jeb.335010.5617/jeb.3350Search in Google Scholar

Darma PN, Baidillah MR, Sifuna MW, Takei M. Real-Time Dynamic Imaging Method for Flexible Boundary Sensor in Wearable Electrical Impedance Tomography. IEEE Sens J. 2020;20(16):9469-79. https://doi.org/10.1109/JSEN.2020.2987534Darma PN Baidillah MR Sifuna MW Takei M Real-Time Dynamic Imaging Method for Flexible Boundary Sensor in Wearable Electrical Impedance Tomography IEEE Sens J 202020169469 79 https://doi.org/10.1109/JSEN.2020.298753410.1109/JSEN.2020.2987534Search in Google Scholar

Darma PN, Takei M. High-Speed and Accurate Meat Composition Imaging by Mechanically-Flexible Electrical Impedance Tomography with k-Nearest Neighbor and Fuzzy k-Means Machine Learning Approaches. IEEE Access. 2021;9:38792-801. https://doi.org/10.1109/ACCESS.2021.3064315Darma PN Takei M High-Speed and Accurate Meat Composition Imaging by Mechanically-Flexible Electrical Impedance Tomography with k-Nearest Neighbor and Fuzzy k-Means Machine Learning Approaches IEEE Access 2021938792 801 https://doi.org/10.1109/ACCESS.2021.306431510.1109/ACCESS.2021.3064315Search in Google Scholar

Cui Z, Wang Q, Xue Q, Fan W, Zhang L, Cao Z, et al. A review on image reconstruction algorithms for electrical capacitance/ resistance tomography. Sens Rev. 2016;36(4):429-45. https://doi.org/10.1108/SR-01-2016-0027Cui Z Wang Q Xue Q Fan W Zhang L Cao Z et al A review on image reconstruction algorithms for electrical capacitance/ resistance tomography Sens Rev 2016364429 45 https://doi.org/10.1108/SR-01-2016-002710.1108/SR-01-2016-0027Search in Google Scholar

Kim BS, Kim KY. Resistivity imaging of binary mixture using weighted Landweber method in electrical impedance tomography. Flow Meas Instrum. 2017;53:39-48. https://doi.org/10.1016/j.flowmeasinst.2016.05.002Kim BS Kim KY Resistivity imaging of binary mixture using weighted Landweber method in electrical impedance tomography Flow Meas Instrum 20175339 48 https://doi.org/10.1016/j.flowmeasinst.2016.05.00210.1016/j.flowmeasinst.2016.05.002Search in Google Scholar

Brandstätter B. Jacobian Calculation for Electrical Impedance Tomography Based on the Reciprocity Principle. IEEE Trans Med Imaging. 2003;39(3):1309-12. https://doi.org/10.1109/TMAG.2003.810390Brandstätter B. Jacobian Calculation for Electrical Impedance Tomography Based on the Reciprocity Principle IEEE Trans Med Imaging 20033931309 12 https://doi.org/10.1109/TMAG.2003.81039010.1109/TMAG.2003.810390Search in Google Scholar

Zhang L. A Modified Landweber Iteration Algorithm using Updated Sensitivity Matrix for Electrical Impedance Tomography. Int J Adv Pervasive Ubiquitous Comput. 2013;5(1):17-29. https://doi.org/10.4018/japuc.2013010103Zhang L A Modified Landweber Iteration Algorithm using Updated Sensitivity Matrix for Electrical Impedance Tomography Int J Adv Pervasive Ubiquitous Comput 20135117 29 https://doi.org/10.4018/japuc.201301010310.4018/japuc.2013010103Search in Google Scholar

Ding M, Yue S, Li J, Wang Y, Wang H. Second-order sensitivity coefficient based electrical tomography imaging. Chem Eng Sci. 2019;199:40-9. https://doi.org/10.1016/j.ces.2019.01.020Ding M Yue S Li J Wang Y Wang H Second-order sensitivity coefficient based electrical tomography imaging Chem Eng Sci 201919940 9 https://doi.org/10.1016/j.ces.2019.01.02010.1016/j.ces.2019.01.020Search in Google Scholar

Kaipio JP, Kolehmainen V, Vauhkonen M, Somersalo E. Inverse problems with structural prior information. Inverse Probl. 1999;15(3):713-29. https://doi.org/10.1088/0266-5611/15/3/306Kaipio JP Kolehmainen V Vauhkonen M Somersalo E Inverse problems with structural prior information Inverse Probl 1999153713 29 https://doi.org/10.1088/0266-5611/15/3/30610.1088/0266-5611/15/3/306Search in Google Scholar

Wang H, Wang C, Yin W. A Pre-Iteration Method for the Inverse Problem in Electrical Impedance Tomography. IEEE Trans Instrum Meas. 2004;53(4):1093-6. https://doi.org/10.1109/TIM.2004.831180Wang H Wang C Yin W A Pre-Iteration Method for the Inverse Problem in Electrical Impedance Tomography IEEE Trans Instrum Meas 20045341093 6 https://doi.org/10.1109/TIM.2004.83118010.1109/TIM.2004.831180Search in Google Scholar

Yorkey TJ, Webster JG, Tompkins WJ. Algorthms for Impedance Tomography Electrcal. IEEE Trans Biomed Eng. 1987;BME-34(11):843-52. https://doi.org/10.1109/TBME.1987.326032Yorkey TJ Webster JG Tompkins WJ Algorthms for Impedance Tomography Electrcal IEEE Trans Biomed Eng 1987BME-3411843 52 https://doi.org/10.1109/TBME.1987.32603210.1109/TBME.1987.3260323692503Search in Google Scholar

Shewchuk JR. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Science (80- ) [Internet]. 1994; Available from: http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdfShewchuk JR An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Science (80- ) [Internet] 1994 Available from http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdfSearch in Google Scholar

Baidillah MR, Iman AAS, Sun Y, Takei M. Electrical Impedance Spectro-Tomography Based on Dielectric Relaxation Model. IEEE Sens J. 2017;17(24):8251-62. https://doi.org/10.1109/JSEN.2017.2710146Baidillah MR Iman AAS Sun Y Takei M Electrical Impedance Spectro-Tomography Based on Dielectric Relaxation Model IEEE Sens J 201717248251 62 https://doi.org/10.1109/JSEN.2017.271014610.1109/JSEN.2017.2710146Search in Google Scholar

Harikumar R, Prabu R, Raghavan S. Electrical Impedance Tomography ( EIT ) and Its Medical Applications : A Review. 2013;(4):193-8.Harikumar R Prabu R Raghavan S Electrical Impedance Tomography ( EIT ) and Its Medical Applications A Review 20134193 8Search in Google Scholar

Crabb MG. Convergence study of 2D forward problem of electrical impedance tomography with high-order finite elements. Inverse Probl Sci Eng. 2017;25(10):1397-422. https://doi.org/10.1080/17415977.2016.1255739Crabb MG Convergence study of 2D forward problem of electrical impedance tomography with high-order finite elements Inverse Probl Sci Eng 201725101397 422 https://doi.org/10.1080/17415977.2016.125573910.1080/17415977.2016.1255739Search in Google Scholar

Jehl M, Avery J, Malone E. A nonlinear approach to difference imaging in EIT ; assessment of the robustness in the presence of modelling errors. Inverse Probl. 2015;31(3):35012. http://dx.doi.org/10.1088/0266-5611/31/3/035012Jehl M Avery J Malone E A nonlinear approach to difference imaging in EIT ; assessment of the robustness in the presence of modelling errors Inverse Probl 201531335012 http://dx.doi.org/10.1088/0266-5611/31/3/03501210.1088/0266-5611/31/3/035012Search in Google Scholar

Peng L, Merkus H, Scarlett B. Using Regularization Methods for Image Reconstruction of Electrical Capacitance Tomography. Part Part Syst Charact. 2000;17:96-104. https://doi.org/10.1002/1521-4117(200010)17:3<96::AID-PPSC96>3.0.CO;2-8Peng L Merkus H Scarlett B Using Regularization Methods for Image Reconstruction of Electrical Capacitance Tomography Part Part Syst Charact 20001796 104 https://doi.org/10.1002/1521-4117(200010)17:3<96::AID-PPSC96>3.0.CO;2-810.1002/1521-4117(200010)17:3<96::AID-PPSC96>3.0.CO;2-8Search in Google Scholar

Vauhkonen M, Vadâsz D, Karjalainen PA, Somersalo E, Kaipio JP. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging. 1998;17(2):285-93. https://doi.org/10.1109/42.700740Vauhkonen M Vadâsz D Karjalainen PA Somersalo E Kaipio JP Tikhonov regularization and prior information in electrical impedance tomography IEEE Trans Med Imaging 1998172285 93 https://doi.org/10.1109/42.70074010.1109/42.700740Search in Google Scholar

Cheney M, Engineering B, York N. NOSER : An Algorithm for Solving the Inverse Conductivity Problem. Int J Imaging Syst Technol. 1991;2(1990):66-75. https://doi.org/10.1002/ima.1850020203Cheney M Engineering B York N NOSER : An Algorithm for Solving the Inverse Conductivity Problem Int J Imaging Syst Technol 19912199066 75 https://doi.org/10.1002/ima.185002020310.1002/ima.1850020203Search in Google Scholar

Kang SI, Khambampati AK, Jeon MH, Kim BS, Kim KY. A sub-domain based regularization method with prior information for human thorax imaging using electrical impedance tomography. Meas Sci Technol. 2016;27:25703. https://doi.org/10.1088/0957-0233/27/2/025703Kang SI Khambampati AK Jeon MH Kim BS Kim KY A sub-domain based regularization method with prior information for human thorax imaging using electrical impedance tomography Meas Sci Technol 20162725703 https://doi.org/10.1088/0957-0233/27/2/02570310.1088/0957-0233/27/2/025703Search in Google Scholar

Borsic A, Graham BM, Adler A, Lionheart WRB. In vivo impedance imaging with total variation regularization. IEEE Trans Med Imaging. 2010;29(1):44-54. https://doi.org/10.1109/TMI.2009.2022540Borsic A Graham BM Adler A Lionheart WRB In vivo impedance imaging with total variation regularization IEEE Trans Med Imaging 201029144 54 https://doi.org/10.1109/TMI.2009.202254010.1109/TMI.2009.202254020051330Search in Google Scholar

Song X, Xu Y, Dong F. A hybrid regularization method combining Tikhonov with total variation for electrical resistance tomography. Flow Meas Instrum. 2015;1-9. https://doi.org/10.1016/j.flowmeasinst.2015.07.001Song X Xu Y Dong F A hybrid regularization method combining Tikhonov with total variation for electrical resistance tomography Flow Meas Instrum 20151 9 https://doi.org/10.1016/j.flowmeasinst.2015.07.00110.1016/j.flowmeasinst.2015.07.001Search in Google Scholar

Hu L, Wang H, Zhao B, Yang W. A hybrid reconstruction algorithm for electrical impedance tomography. Meas Sci Technol. 2007;18(3):813-8. https://doi.org/10.1088/0957-0233/18/3/033Hu L Wang H Zhao B Yang W A hybrid reconstruction algorithm for electrical impedance tomography Meas Sci Technol 2007183813 8 https://doi.org/10.1088/0957-0233/18/3/03310.1088/0957-0233/18/3/033Search in Google Scholar

Braun F, Proenc M, Sol J, Thiran J philippe, Adler A. A Versatile Noise Performance Metric for Electrical Impedance Tomography Algorithms. IEEE Trans Biomed Circuits Syst. 2017;64(10):2321-30. https://doi.org/10.1109/TBME.2017.2659540Braun F Proenc M Sol J Thiran J philippe Adler A A Versatile Noise Performance Metric for Electrical Impedance Tomography Algorithms IEEE Trans Biomed Circuits Syst 201764102321 30 https://doi.org/10.1109/TBME.2017.265954010.1109/TBME.2017.265954028141516Search in Google Scholar

Christian PER. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Comput. 1990;11(3):503-18. https://doi.org/10.1137/0911028Christian PER Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank SIAM J Sci Comput 1990113503 18 https://doi.org/10.1137/091102810.1137/0911028Search in Google Scholar

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251-69. https://doi.org/10.1088/0031-9155/41/11/002Gabriel S Lau RW Gabriel C The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 199641112251 69 https://doi.org/10.1088/0031-9155/41/11/00210.1088/0031-9155/41/11/0028938025Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie