Uneingeschränkter Zugang

Dopamine detection using mercaptopropionic acid and cysteamine for electrodes surface modification


Zitieren

Wightman R.M., et al. “Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells.” Proceedings of the National Academy of Sciences. 88(23) (1991): 10754-10758 https://doi.org/10.1073/pnas.88.23.10754WightmanR.M.“Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells.”Proceedings of the National Academy of Sciences882319911075410758https://doi.org/10.1073/pnas.88.23.1075410.1073/pnas.88.23.10754Search in Google Scholar

Chen T.K., Luo G., Ewing A.G. “Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level.” Analytical Chemistry. 66(19) (1994): 3031-3035. https://doi.org/10.1021/ac00091a007ChenT.K.LuoG.EwingA.G.“Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level.”Analytical Chemistry6619199430313035https://doi.org/10.1021/ac00091a00710.1021/ac00091a007Search in Google Scholar

Pothos E.N., Davila V, Sulzer D. “Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.” Journal of Neuroscience. 18(11) (1998): 4106-4118. https://doi.org/10.1523/JNEUROSCI.18-11-04106.1998PothosE.N.DavilaVSulzerD.“Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.”Journal of Neuroscience1811199841064118https://doi.org/10.1523/JNEUROSCI.18-11-04106.199810.1523/JNEUROSCI.18-11-04106.1998Search in Google Scholar

Alvarez de Toledo, G., Fernandez-Chacon R., Fernandez J.M. “Release of secretory products during transient vesicle fusion.” Nature. 363 (1993): 554-558. https://doi.org/10.1038/363554a0Alvarez de ToledoG.Fernandez-ChaconR.FernandezJ.M.“Release of secretory products during transient vesicle fusion.”Nature3631993554558https://doi.org/10.1038/363554a010.1016/0962-8924(93)90049-7Search in Google Scholar

Patel, B. University of Brighton. https://i.ytimg.com/vi/1f92vGOridg/maxresdefault.jpgPatelB.University of Brightonhttps://i.ytimg.com/vi/1f92vGOridg/maxresdefault.jpgSearch in Google Scholar

Spégel, C., et al. “On-chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes.” Electroanalysis. 19(2-3) (2007): 263-271. https://doi.org/10.1002/elan.200603720SpégelC.“On-chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes.”Electroanalysis192-32007263271https://doi.org/10.1002/elan.20060372010.1002/elan.200603720Search in Google Scholar

Heiskanen, A.R., et al. “Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy.” Langmuir. 24(16) (2008): 9066-9073. https://doi.org/10.1021/la800580fHeiskanenA.R.“Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy.”Langmuir2416200890669073https://doi.org/10.1021/la800580f10.1021/la800580fSearch in Google Scholar

Robinson, D.L., et al. “Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo.” Clinical Chemistry. 49(10) (2003): 1763-1773. https://doi.org/10.1373/49.10.1763RobinsonD.L.“Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo.”Clinical Chemistry4910200317631773https://doi.org/10.1373/49.10.176310.1373/49.10.1763Search in Google Scholar

Zachek, M.K., et al. “Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry.” Journal of Electroanalytical Chemistry. 614(1) (2008): 113-120. https://doi.org/10.1016/j.jelechem.2007.11.007ZachekM.K.“Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry.”Journal of Electroanalytical Chemistry61412008113120https://doi.org/10.1016/j.jelechem.2007.11.00710.1016/j.jelechem.2007.11.007Search in Google Scholar

Gomez-Hens A., Aguilar-Caballos M.P. “Modern analytical approaches to high-throughput drug discovery.” TrAC Trends in Analytical Chemistry. 26(3) (2007): 171-182. https://doi.org/10.1016/j.trac.2006.12.001Gomez-HensA.Aguilar-CaballosM.P.“Modern analytical approaches to high-throughput drug discovery.”TrAC Trends in Analytical Chemistry2632007171182https://doi.org/10.1016/j.trac.2006.12.00110.1016/j.trac.2006.12.001Search in Google Scholar

Andersson H., Van den Berg A. “Microfluidic devices for cellomics: a review.” Sensors and Actuators B: Chemical. 92(3) (2003): 315-325. https://doi.org/10.1016/S0925-4005(03)00266-1AnderssonH.Van den BergA.“Microfluidic devices for cellomics: a review.”Sensors and Actuators B: Chemical9232003315325https://doi.org/10.1016/S0925-4005(03)00266-110.1016/S0925-4005(03)00266-1Search in Google Scholar

Brischwein, M., et al. “Functional cellular assays with multiparametric silicon sensor chips.” Lab on a Chip. 3(4) (2003): 234-240. https://doi.org/10.1039/b308888jBrischweinM.“Functional cellular assays with multiparametric silicon sensor chips.”Lab on a Chip342003234240https://doi.org/10.1039/b308888j10.1039/b308888j15007452Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie