This work is licensed under the Creative Commons Attribution 4.0 International License.
Briesemeister M, Gómez-Sánchez JA, Bertemes-Filho P, and Pezzin SH. PVC/CNT Electrospun Composites: Morphology and Thermal and Impedance Behavior. Polymers 2024; 16:2867. DOI: 10.3390/polym16202867BriesemeisterMGómez-SánchezJABertemes-FilhoPPezzinSH.PVC/CNT Electrospun Composites: Morphology and Thermal and Impedance Behavior. Polymers2024; 16:2867. DOI: 10.3390/polym16202867Open DOISearch in Google Scholar
deOliveira TC, Ferreira F, deMenezes BRC, Silva DM da, Santos AS, Kawachi EY, Simonetti EAN, and Cividanes LS. Engineering the surface of carbon-based nanomaterials for dispersion control in organic solvents or polymer matrices. Surfaces and Interfaces 2021; 24:101121. DOI: 10.1016/j.surfin.2021.101121deOliveiraTCFerreiraFdeMenezesBRCSilvaDM daSantosASKawachiEYSimonettiEANCividanesLS.Engineering the surface of carbon-based nanomaterials for dispersion control in organic solvents or polymer matrices. Surfaces and Interfaces2021; 24:101121. DOI: 10.1016/j.surfin.2021.101121Open DOISearch in Google Scholar
Gomez-Sanchez JA, Bueno LSR, and Bertemes-Filho P. Evaluation of electric field in polymeric electrodes geometries for liquid biosensing applications using COMSOL multiphysics. Sensing and Bio-Sensing Research 2024; 44:100663. DOI: 10.1016/j.sbsr.2024.100663Gomez-SanchezJABuenoLSRBertemes-FilhoP.Evaluation of electric field in polymeric electrodes geometries for liquid biosensing applications using COMSOL multiphysics. Sensing and Bio-Sensing Research2024; 44:100663. DOI: 10.1016/j.sbsr.2024.100663Open DOISearch in Google Scholar
LaFreniere JMJ, Roberge EJ, and Halpern JM. Review—Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors. Journal of The Electrochemical Society 2020; 167:037556. DOI: 10.1149/1945-7111/ab6cfeLaFreniereJMJRobergeEJHalpernJM.Review—Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors. Journal of The Electrochemical Society2020; 167:037556. DOI: 10.1149/1945-7111/ab6cfeOpen DOISearch in Google Scholar
Htwe YZN and Mariatti M. Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. Journal of Science: Advanced Materials and Devices 2022; 7:100435. DOI: 10.1016/j.jsamd.2022.100435HtweYZNMariattiM.Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. Journal of Science: Advanced Materials and Devices2022; 7:100435. DOI: 10.1016/j.jsamd.2022.100435Open DOISearch in Google Scholar
Pividori MI, Merkoçi A, and Alegret S. Graphite-epoxy composites as a new transducing material for electrochemical genosensing. Biosensors and Bioelectronics 2003; 19:473–84. DOI: 10.1016/S0956-5663(03)00222-7PividoriMIMerkoçiAAlegretS.Graphite-epoxy composites as a new transducing material for electrochemical genosensing. Biosensors and Bioelectronics2003; 19:473–84. DOI: 10.1016/S0956-5663(03)00222-7Open DOISearch in Google Scholar
Mishra V, Ror CHK, Negi S, Kar S, and Borah LN. 3D printing with recycled ABS resin: Effect of blending and printing temperature. Materials Chemistry and Physics 2023; 309:128317. DOI: 10.1016/j.matchemphys.2023.128317MishraVRorCHKNegiSKarSBorahLN.3D printing with recycled ABS resin: Effect of blending and printing temperature. Materials Chemistry and Physics2023; 309:128317. DOI: 10.1016/j.matchemphys.2023.128317Open DOISearch in Google Scholar
Pandey AK, Kumar R, Kachhavaha VS, and Kar KK. Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RCS Advances 2016; 6:50559–71. DOI: 10.1039/C6RA09236EPandeyAKKumarRKachhavahaVSKarKK.Mechanical and thermal behaviours of graphite flake-reinforced acrylonitrile–butadiene–styrene composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RCS Advances2016; 6:50559–71. DOI: 10.1039/C6RA09236EOpen DOISearch in Google Scholar
Dananjaya SAV, Chevali VS, Dear JP, Potluri P, and Abeykoon C. 3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications. Progress in Materials Science 2024; 146:101336. DOI: 10.1016/j.pmatsci.2024.101336DananjayaSAVChevaliVSDearJPPotluriPAbeykoonC.3D printing of biodegradable polymers and their composites – Current state-of-the-art, properties, applications, and machine learning for potential future applications. Progress in Materials Science2024; 146:101336. DOI: 10.1016/j.pmatsci.2024.101336Open DOISearch in Google Scholar
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, and Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews 2023; 128:5049–138. DOI: 10.1021/acs.chemrev.2c00823MinJTuJXuCLukasHShinSYangYSolomonSAMukasaDGaoW.Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews2023; 128:5049–138. DOI: 10.1021/acs.chemrev.2c00823Open DOISearch in Google Scholar
Erdem A, Yildiz E, Senturk H, and Maral. Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis 2023; 230:115385. DOI: 10.1016/j.jpba.2023.115385ErdemAYildizESenturkHMaralImplementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis2023; 230:115385. DOI: 10.1016/j.jpba.2023.115385Open DOISearch in Google Scholar
Khalil A, Hashaikeh R, and Hilal N. 3D printed zeolite-Y for removing heavy metals from water. Journal of Water Process Engineering 2021; 42:102187. DOI: 10.1016/j.jwpe.2021.102187KhalilAHashaikehRHilalN.3D printed zeolite-Y for removing heavy metals from water. Journal of Water Process Engineering2021; 42:102187. DOI: 10.1016/j.jwpe.2021.102187Open DOISearch in Google Scholar
Muñoz J, Montes R, and Baeza M. ETrends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC Trends in Analytical Chemistry 2017; 97:201–15. DOI: 10.1016/j.trac.2017.08.012MuñozJMontesRBaezaM.ETrends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC Trends in Analytical Chemistry2017; 97:201–15. DOI: 10.1016/j.trac.2017.08.012Open DOISearch in Google Scholar
Wilczewska P, Breczko J, Bobrowska DM, WysockaŻołopa M, Goclon J, Basa A, and Winkler K. Enhancement of polypyrrole electrochemical performance with graphene quantum dots in polypyrrole nanoparticle/graphene quantum dot composites. Journal of Electroanalytical Chemistry 2022; 923:116767. DOI: 10.1016/j.jelechem.2022.116767WilczewskaPBreczkoJBobrowskaDMWysockaŻołopaMGoclonJBasaAWinklerK.Enhancement of polypyrrole electrochemical performance with graphene quantum dots in polypyrrole nanoparticle/graphene quantum dot composites. Journal of Electroanalytical Chemistry2022; 923:116767. DOI: 10.1016/j.jelechem.2022.116767Open DOISearch in Google Scholar
Zhou W, Cheng F, Cai C, and Fu Y. Bioinspired dry-state polylactic acid adhesives-based wearable sensor with reversible adhesive performance in harsh environments via building hierarchical liquid metal bead structure. Composites Science and Technology 2023; 242:110207. DOI: 10.1016/j.compscitech.2023.110207ZhouWChengFCaiCFuY.Bioinspired dry-state polylactic acid adhesives-based wearable sensor with reversible adhesive performance in harsh environments via building hierarchical liquid metal bead structure. Composites Science and Technology2023; 242:110207. DOI: 10.1016/j.compscitech.2023.110207Open DOISearch in Google Scholar
Ecco LG, Dul S, Pereira-Schmitz D, deOliveira-Barra GM, Guenther-Soares B, Fambri L, and Pegoretti A. Rapid Prototyping of Efficient Electromagnetic Interference Shielding Polymer Composites via Fused Deposition Modeling. Applied Sciences 2018; 9:37. DOI: 10.3390/app9010037EccoLGDulSPereira-SchmitzDdeOliveira-BarraGMGuenther-SoaresBFambriLPegorettiA.Rapid Prototyping of Efficient Electromagnetic Interference Shielding Polymer Composites via Fused Deposition Modeling. Applied Sciences2018; 9:37. DOI: 10.3390/app9010037Open DOISearch in Google Scholar
Monica PR, Chaubey N, and Sreedevi VT. An optimized geometry-physics based compact model of CNTFET. Material Today: Proceedings 2016; 3:2295–304. DOI: 10.1016/j.matpr.2016.04.140MonicaPRChaubeyNSreedeviVT.An optimized geometry-physics based compact model of CNTFET. Material Today: Proceedings2016; 3:2295–304. DOI: 10.1016/j.matpr.2016.04.140Open DOISearch in Google Scholar
Hossain J, Tabatabaei BT, Kiki M, and Choi JW. Additive Manufacturing of Sensors: A Comprehensive Review. International Journal of Precision Engineering and Manufacturing-Green Technology 2024; 8:1. DOI: 10.1007/s40684-024-00629-5HossainJTabatabaeiBTKikiMChoiJW.Additive Manufacturing of Sensors: A Comprehensive Review. International Journal of Precision Engineering and Manufacturing-Green Technology2024; 8:1. DOI: 10.1007/s40684-024-00629-5Open DOISearch in Google Scholar
Gasser A, Eveness J, Kiely J, Attwood D, and Luxton R. A non-contact impedimetric biosensing system for classification of toxins associated with cytotoxicity testing. Bioelectrochemistry 2020; 133:107448. DOI: 10.1016/j.bioelechem.2019.107448GasserAEvenessJKielyJAttwoodDLuxtonR.A non-contact impedimetric biosensing system for classification of toxins associated with cytotoxicity testing. Bioelectrochemistry2020; 133:107448. DOI: 10.1016/j.bioelechem.2019.107448Open DOISearch in Google Scholar
Piedimonte P, Sola L, Cretich M, Gori A, Chiari M, Marchisio E, Borga P, Bertacco R, Melloni A, Ferrari G, and Sampietro M. Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus. Biosensors and Bioelectronics 2022; 202:113996. DOI: 10.1016/j.bios.2022.113996PiedimontePSolaLCretichMGoriAChiariMMarchisioEBorgaPBertaccoRMelloniAFerrariGSampietroM.Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus. Biosensors and Bioelectronics2022; 202:113996. DOI: 10.1016/j.bios.2022.113996Open DOISearch in Google Scholar
Arya A and Sharma A. Temperature and Salt-Dependent Dielectric Properties of Blend Solid Polymer Electrolyte Complexed with LiBOB. Macromolecular Research 2019; 27:334–45. DOI: 10.1007/s13233-019-7077-5AryaASharmaA.Temperature and Salt-Dependent Dielectric Properties of Blend Solid Polymer Electrolyte Complexed with LiBOB. Macromolecular Research2019; 27:334–45. DOI: 10.1007/s13233-019-7077-5Open DOISearch in Google Scholar
Buehler M, Cobos D, and Dunne K. Dielectric constant and osmotic potential from ion-dipole polarization measurements of KCl-and NaCl-doped aqueous solutions. Proc. of the 9th Int. Conf. on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA 2011) (Missouri, June 2011) 2011; 1:70–7BuehlerMCobosDDunneK.Dielectric constant and osmotic potential from ion-dipole polarization measurements of KCl-and NaCl-doped aqueous solutions. Proc. of the 9th Int. Conf. on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA 2011) (Missouri, June 2011)2011; 1:70–7Search in Google Scholar
Rivera A and Rössler EA. Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B 2006; 73:212201. DOI: 10.1103/PhysRevB.73.212201RiveraARösslerEA.Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B2006; 73:212201. DOI: 10.1103/PhysRevB.73.212201Open DOISearch in Google Scholar
Aswathy PK, Ganga R, and Rajendran DN. Impact of A-site calcium on structural and electrical properties of samarium cobaltite perovskites. Solid State Communications 2022; 350:114748. DOI: 10.1016/j.ssc.2022.114748AswathyPKGangaRRajendranDN.Impact of A-site calcium on structural and electrical properties of samarium cobaltite perovskites. Solid State Communications2022; 350:114748. DOI: 10.1016/j.ssc.2022.114748Open DOISearch in Google Scholar