Uneingeschränkter Zugang

Spatio-Temporal Assessment of Vegetation Dynamics in the Zouagha Forest, Northeastern Algeria (2000-2020)

,  und   
04. Aug. 2025

Zitieren
COVER HERUNTERLADEN

Abdourhamane, H., Morou, B., Rabiou, H., & Mahamane, A. (2013). Caractéristiques floristiques, diversité et structure de la végétation ligneuse dans le Centre-Sud du Niger : cas du complexe des forêts classées de Dan Kada Dodo-Dan Gado. International Journal of Biological and Chemical Sciences, 7(3), 1048-1068. https://doi.org/10.4314/ijbcs.v7i3.13 Search in Google Scholar

Alademomi, A. S., Okolie, C. J., Daramola, O. E., Agboola, R. O., & Salami, T. J. (2020). Assessing the relationship of LST, NDVI and EVI with land cover changes in the Lagos Lagoon. Geographicae Environment, 39(3), 87-109. https://doi.org/10.2478/quageo-2020-0025 Search in Google Scholar

Alves, L. F., Vieira, S. A., Scaranello, M. A., Camargo, P. B., Santos, F. A. M., Joly, C. A., & Martinelli, L. A. (2010). Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260(5), 679-691. https://doi.org/10.1016/j.foreco.2010.05.023 Search in Google Scholar

Aricak, B. (2015). Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: A case study in Kastamonu Regional Forest Directorate (Turkey). Environmental Monitoring and Assessment, 187(7), 1-10. https://doi.org/10.1007/s10661-015-4663-7 Search in Google Scholar

Babamaaji, R. A., & Lee, J. (2014). Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environmental Earth Sciences, 71, 4309-4317. https://doi.org/10.1007/s12665-013-2825-x Search in Google Scholar

Balenović, I., Šimić Milas, A., & Marjanović, H. (2017). A comparison of stand-level volume estimates from image-based canopy height models of different spatial resolutions. Remote Sensing, 9(3), 205. https://doi.org/10.3390/rs9030205 Search in Google Scholar

Barbati, A., Salvati, R., Ferrari, B., Di Santo, D., Quatrini, A., Portoghesi, L., Travaglini, D., Iovino, F., & Nocentini, S. (2012). Assessing and promoting old-growthness of forest stands: Lessons from research in Italy. Plant Biosystems, 146(1), 167-174. https://doi.org/10.1080/11263504.2011.650730 Search in Google Scholar

Barbeito, I., Collet, C., & Ningre, F. (2014). Crown responses to neighbour density and species identity in a young mixed deciduous stand. Trees, 28(6), 1751-1765. https://doi.org/10.1007/s00468-014-1082-2 Search in Google Scholar

Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161-173. https://doi.org/10.1016/0034-4257(91)90009-U Search in Google Scholar

Baumann, M., Ozdoga, M., Wolter, P. T., Krylov, A., Vladimirova, N., & Radeloff, V. C. (2014). Landsat remote sensing of forest windfall disturbance. Remote Sensing of Environment, 143, 171-179. https://doi.org/10.1016/j.rse.2013.12.020 Search in Google Scholar

Belote, R. T., Prisley, S., Jones, R. H., Fitzpatrick, M., & De Beurs, K. (2011). Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). Forest Ecology and Management, 261(7), 1315-1324. https://doi.org/10.1016/j.foreco.2011.01.010 Search in Google Scholar

Bendixsen, D. P., Hallgren, W. S., & Frazier, A. E. (2015). Stress factors associated with forest decline in xeric oak forests of south-central United States. Forest Ecology and Management, 347(3), 40-48. https://doi.org/10.1016/j.foreco.2015.03.015 Search in Google Scholar

Benoumeldj, M., Rached-Kanouni, M., Chouiter, N., Bouchareb, A., & Ababsa, L. (2023). Exploring the association between vegetation cover and land surface temperature in Constantine: A comparative analysis. Revue des BioRessources, 13(2), 50-65. https://dspace.univ-ouargla.dz/jspui/handle/123456789/35369 Search in Google Scholar

Bento, V. A., Gouveia, C. M., DaCamara, C. C., & Trigo, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259, 286-295. https://doi.org/10.1016/j.agrformet.2018.05.014 Search in Google Scholar

Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29(4), 552-557. https://doi.org/10.7334/psicothema2016.383 Search in Google Scholar

Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2018). Effect of variance ratio on ANOVA robustness: Might 1.5 be the limit? Behavior Research Methods, 50(3), 937-962. https://doi.org/10.3758/s13428-017-0918-2 Search in Google Scholar

Boucif, O. E. W., Rached-Kanouni, M. & Chouiter, N. (2024). Phytochemical characterization and valorization of Quercus ilex (west of Algeria). Global NEST Journal, 26(10).06636. https://doi.org/10.30955/gnj.06636 Search in Google Scholar

Bouget, C., Cours, J., & Sallé, A. (2023). Forêts en crise et biodiversité : menaces et opportunités. Effets des dépérissements et de leur gestion sur la biodiversité forestière. Revue forestière française, 74(2), 193-199. https://doi.org/10.20870/revforfr.2023.7594 Search in Google Scholar

Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., & Ruan, H. (2019). Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests, 10(2), 145. https://doi.org/10.3390/f10020145 Search in Google Scholar

Castro, A. A., Lacerda, M. C., Zanuncio, T. V., de S, Ramalho, F., Polanczyk, R. A., Serrão, J. E., & Zanuncio, J. C. (2012). Effect of the insect growth regulator diflubenzuron on the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology, 21, 96-103. https://doi.org/10.1007/s10646-011-0769-z Search in Google Scholar

Catry, F. X., Branco, M., Sousa, E., Caetano, J., Naves, P., & Nóbrega, F. (2017). Presence and dynamics of ambrosia beetles and other xylophagous insects in Mediterranean cork oak forest following fire. Forest Ecology and Management, 404, 45-54. https://doi.org/10.1016/j.foreco.2017.08.029 Search in Google Scholar

Catry, F. X., Moreira, F., & Cardillo, E. (2012b). Post-fire management of cork oak forests. Managing Forest Ecosystems, 24, 195-222. https://doi.org/10.1007/978-94-007-2208-8_9 Search in Google Scholar

Catry, F. X., Moreira, F., Pausas, J. G., Fernandes, P. M., Rego, F., & Cardillo, E. K. (2012a). Cork oak vulnerability to fire: The role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE, 7(6), 1-18. https://doi.org/10.1371/journal.pone.0039810 Search in Google Scholar

Chouiter, N., Rached-Kanouni, M., Laala, A., & Redjaimia, L. (2022). Floristic composition and structure of the Zouagha forest (Eastern Algeria). IN PROCEEDINGS OF IV. International Agricultural, Biological & Life Science Conference Agbiol 2022 (P. 45). Search in Google Scholar

Chouiter, N., Rached-Kanouni, M., Redjaimia, L., Benaicha, K., Ababsa, L., & Rahab, R. (2023). Évaluation de l’état de vitalité du Quercus suber L dans la forêt de Zouagha. Revue des BioRessources, 13(1), 20-27. https://dspace.univouargla.dz/jspui/handle/123456789/33176 Search in Google Scholar

Chouiter, N., Rached-Kanouni, M., Benoumeldjad, M., & Ababsa, L. (2024 a). Structure et régénération du chêne afares (Quercus afares, Pomel) dans la forêt de Zouagha. Revue des BioRessources, 14(2), 23-30. https://dspace.univ-ouargla.dz/jspui/handle/123456789/37863 Search in Google Scholar

Chouiter, N., Rached-Kanouni, M., & El Wahida Boucif, O. (2024 b). Assessment of the health status of oak trees in the Zouagha forest (north-east of Algeria). Ekológia (Bratislava), 43(2), 158-166. https://doi.org/10.2478/eko-2024-0016 Search in Google Scholar

Coulter, L., Stow, D., Tsai, Y. H., Chavis, C., Lippit, C., Fraley, G., & McCreight, R. (2012). Automated detection of people and vehicles in natural environments using high temporal resolution airborne remote sensing. In Proceedings of the ASPRS Annual Conference, Sacramento, California, USA, March 19-23 Search in Google Scholar

De la Cruz, A. C., Gil, P. M., Fernández-Cancio, Á., Minaya, M., Navarro-Cerrillo, R. M., Sánchez Salguero, R., & Grau, J. M. (2014). Defoliation triggered by climate-induced effects in Spanish ICP Forests monitoring plots. Forest Ecology and Management, 331(9), 245–255. https://doi.org/10.1016/j.foreco.2014.08.010 Search in Google Scholar

De Vivo, F., Battipede, M., & Johnson, E. (2021). Infra-red line camera data-driven edge detector in UAV forest fire monitoring. Aerospace Science and Technology, 111, 106574. https://doi.org/10.1016/j.ast.2021.106574 Search in Google Scholar

Direction Générale des Forêts (DGF). (2010). Fiche signalétique de la forêt domaniale de Santé des forêts : Maladies, insectes, accidents climatiques. Diagnostic et prévention. Forêt Zouagha. Search in Google Scholar

Direction Générale des Forêts (DGF). (2020). Fiche signalétique de la forêt domaniale de Santé des forêts : Maladies, insectes, accidents climatiques. Diagnostic et prévention. Forêt Zouagha. Search in Google Scholar

Direction Générale des Forêts (DGF). (2022). Fiche signalétique de la forêt domaniale de Santé des forêts : Maladies, insectes, accidents climatiques. Diagnostic et prévention. Forêt Zouagha Search in Google Scholar

Encinas-Valero, M., Esteban, R., Heres, A. M., Vivas, M., Fakhet, D., Aranjuelo, I., Solla, A., Moreno, G., & Curiel Yuste, J. (2022). Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. New Phytologist, 235(6), 2237-2251. https://doi.org/10.1111/nph.18182 Search in Google Scholar

Fayech, D., & Tarhouni, J. (2021). Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Modeling Earth Systems and Environment, 7(3), 1667–1682. https://doi.org/10.1007/s40808-020-00896-6 Search in Google Scholar

Frolking, S., Palace, M. W., Clark, D. B., Chambers, J. Q., Hugart, H. H., & Hurtt, G. C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114(G2), 1–27. https://doi.org/10.1029/2008JG000911 Search in Google Scholar

Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A., & Ripullone, F. (2017). Drought-induced oak decline in the western Mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience. iForest, 10(5), 796-806. https://doi.org/10.3832/ifor2317-010 Search in Google Scholar

Getzin, S., Wiegand, K., & Schoning, I. (2012). Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3(2), 397–404. https://doi.org/10.1111/j.2041-210X.2011.00158.x Search in Google Scholar

Giannetti, F., Chirici, G., Gobakken, T., Næsset, E., Travaglini, D., & Puliti, S. (2018). A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sensing of Environment, 213, 195–205. https://doi.org/10.1016/j.rse.2018.05.016 Search in Google Scholar

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2018). Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using vegetation health index (VHI) in Raya and its environs, Northern Ethiopia. Environmental Systems Research, 7, 13. https://doi.org/10.1186/s40068-018-0115-z Search in Google Scholar

Hrůza, P., Mikita, T., & Janata, P. (2016). Monitoring of forest hauling roads wearing course damage using unmanned aerial systems. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(5), 1537–1546. https://doi.org/10.11118/actaun201664051537 Search in Google Scholar

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X Search in Google Scholar

Hyyppä, E., Hyyppä, J., Hakala, T., Kukko, A., Wulder, M. A., White, J. C., Pyörälä, J., Yu, X., Wang, Y., Virtanen, J. P., & Pohjavirta, O. (2020). Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 41–60. https://doi.org/10.1016/j.isprsjprs.2020.03.021 Search in Google Scholar

Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1), 85-98. https://doi.org/10.1016/S0034-4257(03)00174-3 Search in Google Scholar

Jurjević, L., Gašparović, M., Liang, X., & Balenović, I. (2021). Assessment of close-range remote sensing methods for DTM estimation in a lowland deciduous forest. Remote Sensing, 13(11), 2063. https://doi.org/10.3390/rs13112063 Search in Google Scholar

Kim, H. Y. (2015). Statistical notes for clinical researchers: Post-hoc multiple comparisons. Restorative Dentistry & Endodontics, 40(2), 172–176. https://doi.org/10.5395/rde.2015.40.2.172 Search in Google Scholar

Meera, G. G., Parthiban, S., Nagaraj, T., & Christy, A. (2015). NDVI: Vegetation change detection using remote sensing and GIS – A case study of Vellore district. In 3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015), Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415 Search in Google Scholar

Mersha, E., Degefa, S., Argaw, M., & Mengist, W. (2024). Impact of land use land cover changes on ecosystem service values: Implication for landscape management, 18(1), 115-126. https://doi.org/10.2478/jlecol-2025-0004 Search in Google Scholar

Moreira, F., Catry, F., Duarte, I., Acácio, V., & Silva, J. (2009). A conceptual model of sprouting responses in relation to fire damage: An example with cork oak (Quercus suber L.) trees in Southern Portugal. Plant Ecology, 201(1), 77-85. https://doi.org/10.1007/s11258-008-9476-0 Search in Google Scholar

Mushtaq, A. G., & Asima, N. (2016). Determining the vegetation indices (NDVI) from Landsat 8 satellite data. International Journal of Advance Research (IJAR), 4(8), 1459-1463. https://doi.org/10.21474/IJAR01/1348 Search in Google Scholar

Nadezhdina, N., Ferreira, M. I., Silva, R., & Pacheco, C. A. (2008). Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant and Soil, 305, 105–119. https://doi.org/10.1007/s11104-007-9398-y Search in Google Scholar

Quezel, P., & Barbero, M. (1990). Les forêts méditerranéennes problèmes posés par leur signification historique, écologique et leur conservation. Acta Botánica Malacitana, 15, 145–178. https://doi.org/10.24310/abm.v15i.9300 Search in Google Scholar

Rahimi, E., Dong, P., & Ahmadzadeh, F. (2025 a). Iran’s dam waterbodies: A 10-Year Trend Analysis (2013–2023). Journal of Landscape Ecology, 18(1),102-113. https://doi.org/10.2478/jlecol-2025-0006 Search in Google Scholar

Rahimi, E., & Dong, P. (2025 b). The influence of spatial extent shape on Lst-Ndvi patterns: A Multi-scale perspective, Journal of Landscape Ecology, 18(1), 115-126. https://doi.org/10.2478/jlecol-2025-0007 Search in Google Scholar

Roula, S. E., Bouhraoua, R. T., & Catry, F. X. (2020). Factors affecting post-fire regeneration after coppicing of cork oak (Quercus suber) trees in northeastern Algeria. Canadian Journal of Forest Research, 50(4), 371-379. https://doi.org/10.1139/cjfr-2019-0181 Search in Google Scholar

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote sensing of environment, 55(2), 95-107. https://doi.org/10.1016/0034-4257(95)00186-7 Search in Google Scholar

Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. https://doi.org/10.1093/beheco/arn020 Search in Google Scholar

Sanchez-González, M., Stiti, B., Chaar, H., & Cañellas, I. (2010). Dynamic dominant height growth model for Spanish and Tunisian cork oak (Quercus suber L.) forests. Forest Systems, 19(3), 285-298. https://doi.org/10.5424/fs/2010193-8495 Search in Google Scholar

Tiberi, R., Branco, M., Bracalini, M., Croci, F., & Panzavolta, T. (2016). Cork oak pests: A review of insect damage and management. Annals of Forest Science, 73, 219-232. https://doi.org/10.1007/s13595-015-0534-1 Search in Google Scholar

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017(1), 1353691. https://doi.org/10.1155/2017/1353691 Search in Google Scholar

Zou, X., Zhu, S., & Mõttus, M. (2022). Estimation of canopy structure of field crops using Sentinel-2 bands with vegetation indices and machine learning algorithms. Remote Sensing, 14, 2849. https://doi.org/10.3390/rs14122849 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geowissenschaften, andere, Biologie, Ökologie