Uneingeschränkter Zugang

Assessing Burnt Area Severity in the Critical Zone Monitoring Site of a Philippine Natural Park

,  und   
30. Apr. 2025

Zitieren
COVER HERUNTERLADEN

Adagbasa, G. E., Adelabu, S. A., & Okello, T. W. (2018). Spatio-temporal assessment of fire severity in a protected and mountainous ecosystem. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 6572-6575). IEEE. https://doi.org/10.1109/IGARSS.2018.8518268 Search in Google Scholar

Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. W., Russell‐Smith, J., Setterfield, S.A., Williams, R.J., & Woinarski, J. C. (2005). Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral ecology, 30(2), 155-167. https://doi.org/10.1111/j.1442-9993.2005.01441.x Search in Google Scholar

Bohlman, G. N., North, M., & Safford, H. D. (2016). Shrub removal in reforested post-fire areas increases native plant species richness. Forest Ecology and Management, 374, 195-210. https://doi.org/10.1016/j.foreco.2016.05.008 Search in Google Scholar

Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., Defries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S., & Swetnam, T. W. (2011). The human dimension of fire regimes on Earth. Journal of biogeography, 38(12), 2223-2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x Search in Google Scholar

Boyles, R., Schutz, E., & de Leon, J. (2016). Bubalus mindorensis. The IUCN Red List of Threatened Species, 2016, e. T3127A50737640. Search in Google Scholar

Buizer, M., & Kurz, T. (2016). Too hot to handle: Depoliticisation and the discourse of ecological modernisation in fire management debates. Geoforum, 68, 48-56. https://doi.org/10.1016/j.geoforum.2015.11.011 Search in Google Scholar

Calkin, D. E., Thompson, M. P., & Finney, M. A. (2015). Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems, 2, 1-10. https://doi.org/10.1186/s40663-015-0033-8 Search in Google Scholar

Carreon-Lagoc, J. (1994). The NIPAS Act of 1992. Aqua Farm News, 12(3), 8-9. Search in Google Scholar

Dhakal, S., Shrestha, B. B., Sharma, K. P., Paudel, S., & Siwakoti, M. (2024). Grasslands are more vulnerable to plant invasions than forests in south-central Nepal. Environmental Challenges, 15, 100929. https://doi.org/10.1016/j.envc.2024.100929 Search in Google Scholar

Eales, J., Haddaway, N. R., Bernes, C., Cooke, S. J., Jonsson, B. G., Kouki, J., Petrokofsky, G., & Taylor, J. J. (2018). What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environmental Evidence, 7, 1-33. https://doi.org/10.1186/s13750-018-0131-5 Search in Google Scholar

Fernandes, P. M., Davies, G. M., Ascoli, D., Fernández, C., Moreira, F., Rigolot, E., Stoof, C.R., Vega, J.A., & Molina, D. (2013). Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers in Ecology and the Environment, 11(1), 4-14. https://doi.org/10.1890/120298 Search in Google Scholar

Freeman, J., Kobziar, L., Rose, E. W., & Cropper, W. (2017). A critique of the historical‐fire‐regime concept in conservation. Conservation Biology, 31(5), 976-985. https://doi.org/10.1111/cobi.12942 Search in Google Scholar

Galizia, L. F., Barbero, R., Rodrigues, M., Ruffault, J., Pimont, F., & Curt, T. (2023). Global warming reshapes European pyroregions. Earth’s Future, 11(5), e2022EF003182. https://doi.org/10.1029/2022EF003182 Search in Google Scholar

García, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6(1), 31-37. https://doi.org/10.1080/10106049109354290 Search in Google Scholar

Gonzalez, J. C. T., & Dans, A. T. L. (1998). Birds and mammals of the fragmented forests along the Anahawin River, Mt. Iglit-Baco National Park, Mindoro Island, Philippines. Sylvatrop: the technical journal of Philippine Ecosystems and Natural Resources, 8(1-2). Search in Google Scholar

Gonzalez, J.C.T., Dans, A.T.L. and Afuang, L.E. (1999) Rapid Island-Wide Survey of Terrestrial Fauna and Flora on Mindoro Island, Philippines. Mindoro Biodiversity Conservation Programme. Search in Google Scholar

He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983-2010. https://doi.org/10.1111/brv.12544 Search in Google Scholar

Jones, G. M., & Tingley, M. W. (2022). Pyrodiversity and biodiversity: A history, synthesis, and outlook. Diversity and Distributions, 28(3), 386-403. https://doi.org/10.1111/ddi.13280 Search in Google Scholar

Jung, C., Kim, J. W., Marquardt, T., & Kaczmarek, S. (2010). Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. Journal of Asia-Pacific Entomology, 13(3), 233-237. https://doi.org/10.1016/j.aspen.2010.04.001 Search in Google Scholar

Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A.F., Buckland, S.T., Canelles, Q., Clarke, M.F., Fortin, M.J., Hermoso, V., Herrando, S., Keane, R.E., Lake, F.K., McCarthy, M.A., Morán-Ordóñez, A., Parr, C.L., Pausas, J.G., Penman, T.D., Regos, A., Rumpff, L., Santos, J.L., Smith, A.L., Syphard, A.D., Tingley, M.W., & Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355 Search in Google Scholar

Key, C. H., & Benson, N. C. (2006). Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1. Search in Google Scholar

Kirchhoff, C., Callaghan, C. T., Keith, D. A., Indiarto, D., Taseski, G., Ooi, M. K., Le Breton, T.D., Mesaglio, T., Kingsford, R.T., & Cornwell, W. K. (2021). Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Science of the Total environment, 755, 142348. https://doi.org/10.1016/j.scitotenv.2020.142348 Search in Google Scholar

Kovář, P., Štefánek M., and J. Mrázek (2011). “Responses of vegetation stages with woody dominants to stress and disturbance during succession on abandoned tailings in cultural landscape.” Journal of Landscape Ecology 4 (2), 35-48. https://doi.org/10.2478/v10285-012-0037-9 Search in Google Scholar

Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353-2369. https://doi.org/10.1111/gcb.13275 Search in Google Scholar

McCaw, L., Hamilton, T., & Rumley, C. (2005). Application of fire history records to contemporary management issues in south-west Australian forests. In 6th National Conference of the Australian Forest History Society Inc (pp. 555-564). Rotterdam, The Netherlands: Millpress Science Publishers. Search in Google Scholar

Merritt, M. L. (1908). The forests of Mindoro (No. 8). Bureau of Printing. Search in Google Scholar

Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote sensing of Environment, 109(1), 66-80. https://doi.org/10.1016/j.rse.2006.12.006 Search in Google Scholar

Murphy, K. A., Reynolds, J. H., & Koltun, J. M. (2008). Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire, 17(4), 490-499. https://doi.org/10.1071/WF08050 Search in Google Scholar

Nasi, R., Dennis, R., Meijaard, E., Applegate, G., & Moore, P. (2002). Forest fire and biological diversity. UNASYLVA-FAO-, 36-40. Search in Google Scholar

Nitschke, C. R., & Innes, J. L. (2007). Interactions between fire, climate change and forest biodiversity. CABI Reviews, (2006), 9-pp. https://doi.org/10.1079/PAVSNNR2006106 Search in Google Scholar

Pandey, V.C., Bajpai, O., Pandey, D.N., Singh, N. (2015). Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genetic Resources and Crop Evolution, 62(3), 443-450. https://doi.org/10.1007/s10722-014-0208-0 Search in Google Scholar

Parker, B. M., Lewis, T., & Srivastava, S. K. (2015). Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote sensing of Environment, 170, 340-349. https://doi.org/10.1016/j.rse.2015.09.014 Search in Google Scholar

Parr, C. L., & Andersen, A. N. (2006). Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation biology, 20(6), 1610-1619. https://doi.org/10.1111/j.1523-1739.2006.00492.x Search in Google Scholar

Petermann, J. S., & Buzhdygan, O. Y. (2021). Grassland biodiversity. Current Biology, 31(19), R1195-R1201. https://doi.org/10.1016/j.cub.2021.06.060 Search in Google Scholar

Penman, T. D., Bradstock, R. A., & Price, O. (2012). Modelling the determinants of ignition in the Sydney Basin, Australia: implications for future management. International Journal of Wildland Fire, 22(4), 469-478. https://doi.org/10.1071/WF12027\ Search in Google Scholar

Santos, F. M., Terra, G., Piotto, D., & Chaer, G. M. (2021). Recovering ecosystem functions through the management of regenerating community in agroforestry and plantations with Khaya spp. in the Atlantic Forest, Brazil. Forest Ecology and Management, 482, 118854. https://doi.org/10.1016/j.foreco.2020.118854 Search in Google Scholar

Santos, S. M. B. D., Bento-Gonçalves, A., Franca-Rocha, W., & Baptista, G. (2020). Assessment of burned forest area severity and postfire regrowth in chapada diamantina national park (Bahia, Brazil) using dnbr and rdnbr spectral indices. Geosciences, 10(3), 106. https://doi.org/10.3390/geosciences10030106 Search in Google Scholar

Savadogo, P., Tiveau, D., Sawadogo, L., & Tigabu, M. (2008). Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspectives in Plant Ecology, Evolution and Systematics, 10(3), 179-195. https://doi.org/10.1016/j.ppees.2008.03.002 Search in Google Scholar

Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J. V., & Goossens, R. (2014). Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sensing, 6(3), 1803-1826. https://doi.org/10.3390/rs6031803 Search in Google Scholar

Schmerbeck, J., & Seeland, K. (2007). Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy, 24(1), 62-71. https://doi.org/10.1016/j.landusepol.2006.01.001 Search in Google Scholar

Soverel, N. O., Perrakis, D. D., & Coops, N. C. (2010). Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment, 114(9), 1896-1909. https://doi.org/10.1016/j.rse.2010.03.013 Search in Google Scholar

Stephens, S. L., Adams, M. A., Handmer, J., Kearns, F. R., Leicester, B., Leonard, J., & Moritz, M. A. (2009). Urban–wildland fires: how California and other regions of the US can learn from Australia. Environmental Research Letters, 4(1), 014010. https://doi.org/10.1088/1748-9326/4/1/014010 Search in Google Scholar

Teobaldo, D., & Baptista, G. M. D. E. (2016). Measurement of severity of fires and loss of carbon forest sink in the conservation units at Distrito Federal. Revista Brasileira de Geografia 9, 250-264. Search in Google Scholar

Tomchenko, O. V., Khyzhniak, A. V., Sheviakina, N. A., Zahorodnia, S. A., Yelistratova, L. A., Yakovenko, M. I., & Stakhiv, I. R. (2023). Assessment and monitoring of fires caused by the War in Ukraine on Landscape scale. Journal of Landscape Ecology, 16(2), 76-97. https://doi.org/10.2478/jlecol-2023-0011 Search in Google Scholar

Valkó, O., & Deák, B. (2021). Increasing the potential of prescribed burning for the biodiversity conservation of European grasslands. Current Opinion in Environmental Science & Health, 22, 100268. https://doi.org/10.1016/j.coesh.2021.100268 Search in Google Scholar

Veraverbeke, S., Somers, B., Gitas, I., Katagis, T., Polychronaki, A., & Goossens, R. (2012). Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation. International Journal of Applied Earth Observation and Geoinformation, 14(1), 1-11. https://doi.org/10.1016/j.jag.2011.08.004 Search in Google Scholar

Vergara, D. C. D. M., Canlas, C. P. I., & Blanco, A. C. (2024). Mapping and assessment of burned areas in Rizal, Palawan using SAR burned and vegetation indices. Proceedings of SPIE, Eighth Geoinformation Science Symposium 2023: Geoinformation Science for Sustainable Planet, 12977. https://doi.org/10.1117/12.3009673 Search in Google Scholar

Weir, J. K., Sutton, S., & Catt, G. (2020). The theory/practice of disaster justice: Learning from indigenous peoples’ fire management. Natural hazards and disaster justice: Challenges for Australia and its neighbours, 299-317. https://doi.org/10.1007/9 Search in Google Scholar

Wiebe, K. L. (2001). Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? The Auk, 118(2), 412-421. https://doi.org/10.1093/auk/118.2.412 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, Geowissenschaften, andere, Biologie, Ökologie