[
Adagbasa, G. E., Adelabu, S. A., & Okello, T. W. (2018). Spatio-temporal assessment of fire severity in a protected and mountainous ecosystem. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 6572-6575). IEEE. https://doi.org/10.1109/IGARSS.2018.8518268
]Search in Google Scholar
[
Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. W., Russell‐Smith, J., Setterfield, S.A., Williams, R.J., & Woinarski, J. C. (2005). Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral ecology, 30(2), 155-167. https://doi.org/10.1111/j.1442-9993.2005.01441.x
]Search in Google Scholar
[
Bohlman, G. N., North, M., & Safford, H. D. (2016). Shrub removal in reforested post-fire areas increases native plant species richness. Forest Ecology and Management, 374, 195-210. https://doi.org/10.1016/j.foreco.2016.05.008
]Search in Google Scholar
[
Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., Defries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S., & Swetnam, T. W. (2011). The human dimension of fire regimes on Earth. Journal of biogeography, 38(12), 2223-2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x
]Search in Google Scholar
[
Boyles, R., Schutz, E., & de Leon, J. (2016). Bubalus mindorensis. The IUCN Red List of Threatened Species, 2016, e. T3127A50737640.
]Search in Google Scholar
[
Buizer, M., & Kurz, T. (2016). Too hot to handle: Depoliticisation and the discourse of ecological modernisation in fire management debates. Geoforum, 68, 48-56. https://doi.org/10.1016/j.geoforum.2015.11.011
]Search in Google Scholar
[
Calkin, D. E., Thompson, M. P., & Finney, M. A. (2015). Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems, 2, 1-10. https://doi.org/10.1186/s40663-015-0033-8
]Search in Google Scholar
[
Carreon-Lagoc, J. (1994). The NIPAS Act of 1992. Aqua Farm News, 12(3), 8-9.
]Search in Google Scholar
[
Dhakal, S., Shrestha, B. B., Sharma, K. P., Paudel, S., & Siwakoti, M. (2024). Grasslands are more vulnerable to plant invasions than forests in south-central Nepal. Environmental Challenges, 15, 100929. https://doi.org/10.1016/j.envc.2024.100929
]Search in Google Scholar
[
Eales, J., Haddaway, N. R., Bernes, C., Cooke, S. J., Jonsson, B. G., Kouki, J., Petrokofsky, G., & Taylor, J. J. (2018). What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environmental Evidence, 7, 1-33. https://doi.org/10.1186/s13750-018-0131-5
]Search in Google Scholar
[
Fernandes, P. M., Davies, G. M., Ascoli, D., Fernández, C., Moreira, F., Rigolot, E., Stoof, C.R., Vega, J.A., & Molina, D. (2013). Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers in Ecology and the Environment, 11(1), 4-14. https://doi.org/10.1890/120298
]Search in Google Scholar
[
Freeman, J., Kobziar, L., Rose, E. W., & Cropper, W. (2017). A critique of the historical‐fire‐regime concept in conservation. Conservation Biology, 31(5), 976-985. https://doi.org/10.1111/cobi.12942
]Search in Google Scholar
[
Galizia, L. F., Barbero, R., Rodrigues, M., Ruffault, J., Pimont, F., & Curt, T. (2023). Global warming reshapes European pyroregions. Earth’s Future, 11(5), e2022EF003182. https://doi.org/10.1029/2022EF003182
]Search in Google Scholar
[
García, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6(1), 31-37. https://doi.org/10.1080/10106049109354290
]Search in Google Scholar
[
Gonzalez, J. C. T., & Dans, A. T. L. (1998). Birds and mammals of the fragmented forests along the Anahawin River, Mt. Iglit-Baco National Park, Mindoro Island, Philippines. Sylvatrop: the technical journal of Philippine Ecosystems and Natural Resources, 8(1-2).
]Search in Google Scholar
[
Gonzalez, J.C.T., Dans, A.T.L. and Afuang, L.E. (1999) Rapid Island-Wide Survey of Terrestrial Fauna and Flora on Mindoro Island, Philippines. Mindoro Biodiversity Conservation Programme.
]Search in Google Scholar
[
He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983-2010. https://doi.org/10.1111/brv.12544
]Search in Google Scholar
[
Jones, G. M., & Tingley, M. W. (2022). Pyrodiversity and biodiversity: A history, synthesis, and outlook. Diversity and Distributions, 28(3), 386-403. https://doi.org/10.1111/ddi.13280
]Search in Google Scholar
[
Jung, C., Kim, J. W., Marquardt, T., & Kaczmarek, S. (2010). Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. Journal of Asia-Pacific Entomology, 13(3), 233-237. https://doi.org/10.1016/j.aspen.2010.04.001
]Search in Google Scholar
[
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A.F., Buckland, S.T., Canelles, Q., Clarke, M.F., Fortin, M.J., Hermoso, V., Herrando, S., Keane, R.E., Lake, F.K., McCarthy, M.A., Morán-Ordóñez, A., Parr, C.L., Pausas, J.G., Penman, T.D., Regos, A., Rumpff, L., Santos, J.L., Smith, A.L., Syphard, A.D., Tingley, M.W., & Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355
]Search in Google Scholar
[
Key, C. H., & Benson, N. C. (2006). Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1.
]Search in Google Scholar
[
Kirchhoff, C., Callaghan, C. T., Keith, D. A., Indiarto, D., Taseski, G., Ooi, M. K., Le Breton, T.D., Mesaglio, T., Kingsford, R.T., & Cornwell, W. K. (2021). Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Science of the Total environment, 755, 142348. https://doi.org/10.1016/j.scitotenv.2020.142348
]Search in Google Scholar
[
Kovář, P., Štefánek M., and J. Mrázek (2011). “Responses of vegetation stages with woody dominants to stress and disturbance during succession on abandoned tailings in cultural landscape.” Journal of Landscape Ecology 4 (2), 35-48. https://doi.org/10.2478/v10285-012-0037-9
]Search in Google Scholar
[
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353-2369. https://doi.org/10.1111/gcb.13275
]Search in Google Scholar
[
McCaw, L., Hamilton, T., & Rumley, C. (2005). Application of fire history records to contemporary management issues in south-west Australian forests. In 6th National Conference of the Australian Forest History Society Inc (pp. 555-564). Rotterdam, The Netherlands: Millpress Science Publishers.
]Search in Google Scholar
[
Merritt, M. L. (1908). The forests of Mindoro (No. 8). Bureau of Printing.
]Search in Google Scholar
[
Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote sensing of Environment, 109(1), 66-80. https://doi.org/10.1016/j.rse.2006.12.006
]Search in Google Scholar
[
Murphy, K. A., Reynolds, J. H., & Koltun, J. M. (2008). Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire, 17(4), 490-499. https://doi.org/10.1071/WF08050
]Search in Google Scholar
[
Nasi, R., Dennis, R., Meijaard, E., Applegate, G., & Moore, P. (2002). Forest fire and biological diversity. UNASYLVA-FAO-, 36-40.
]Search in Google Scholar
[
Nitschke, C. R., & Innes, J. L. (2007). Interactions between fire, climate change and forest biodiversity. CABI Reviews, (2006), 9-pp. https://doi.org/10.1079/PAVSNNR2006106
]Search in Google Scholar
[
Pandey, V.C., Bajpai, O., Pandey, D.N., Singh, N. (2015). Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genetic Resources and Crop Evolution, 62(3), 443-450. https://doi.org/10.1007/s10722-014-0208-0
]Search in Google Scholar
[
Parker, B. M., Lewis, T., & Srivastava, S. K. (2015). Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote sensing of Environment, 170, 340-349. https://doi.org/10.1016/j.rse.2015.09.014
]Search in Google Scholar
[
Parr, C. L., & Andersen, A. N. (2006). Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation biology, 20(6), 1610-1619. https://doi.org/10.1111/j.1523-1739.2006.00492.x
]Search in Google Scholar
[
Petermann, J. S., & Buzhdygan, O. Y. (2021). Grassland biodiversity. Current Biology, 31(19), R1195-R1201. https://doi.org/10.1016/j.cub.2021.06.060
]Search in Google Scholar
[
Penman, T. D., Bradstock, R. A., & Price, O. (2012). Modelling the determinants of ignition in the Sydney Basin, Australia: implications for future management. International Journal of Wildland Fire, 22(4), 469-478. https://doi.org/10.1071/WF12027\
]Search in Google Scholar
[
Santos, F. M., Terra, G., Piotto, D., & Chaer, G. M. (2021). Recovering ecosystem functions through the management of regenerating community in agroforestry and plantations with Khaya spp. in the Atlantic Forest, Brazil. Forest Ecology and Management, 482, 118854. https://doi.org/10.1016/j.foreco.2020.118854
]Search in Google Scholar
[
Santos, S. M. B. D., Bento-Gonçalves, A., Franca-Rocha, W., & Baptista, G. (2020). Assessment of burned forest area severity and postfire regrowth in chapada diamantina national park (Bahia, Brazil) using dnbr and rdnbr spectral indices. Geosciences, 10(3), 106. https://doi.org/10.3390/geosciences10030106
]Search in Google Scholar
[
Savadogo, P., Tiveau, D., Sawadogo, L., & Tigabu, M. (2008). Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspectives in Plant Ecology, Evolution and Systematics, 10(3), 179-195. https://doi.org/10.1016/j.ppees.2008.03.002
]Search in Google Scholar
[
Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J. V., & Goossens, R. (2014). Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sensing, 6(3), 1803-1826. https://doi.org/10.3390/rs6031803
]Search in Google Scholar
[
Schmerbeck, J., & Seeland, K. (2007). Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy, 24(1), 62-71. https://doi.org/10.1016/j.landusepol.2006.01.001
]Search in Google Scholar
[
Soverel, N. O., Perrakis, D. D., & Coops, N. C. (2010). Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment, 114(9), 1896-1909. https://doi.org/10.1016/j.rse.2010.03.013
]Search in Google Scholar
[
Stephens, S. L., Adams, M. A., Handmer, J., Kearns, F. R., Leicester, B., Leonard, J., & Moritz, M. A. (2009). Urban–wildland fires: how California and other regions of the US can learn from Australia. Environmental Research Letters, 4(1), 014010. https://doi.org/10.1088/1748-9326/4/1/014010
]Search in Google Scholar
[
Teobaldo, D., & Baptista, G. M. D. E. (2016). Measurement of severity of fires and loss of carbon forest sink in the conservation units at Distrito Federal. Revista Brasileira de Geografia 9, 250-264.
]Search in Google Scholar
[
Tomchenko, O. V., Khyzhniak, A. V., Sheviakina, N. A., Zahorodnia, S. A., Yelistratova, L. A., Yakovenko, M. I., & Stakhiv, I. R. (2023). Assessment and monitoring of fires caused by the War in Ukraine on Landscape scale. Journal of Landscape Ecology, 16(2), 76-97. https://doi.org/10.2478/jlecol-2023-0011
]Search in Google Scholar
[
Valkó, O., & Deák, B. (2021). Increasing the potential of prescribed burning for the biodiversity conservation of European grasslands. Current Opinion in Environmental Science & Health, 22, 100268. https://doi.org/10.1016/j.coesh.2021.100268
]Search in Google Scholar
[
Veraverbeke, S., Somers, B., Gitas, I., Katagis, T., Polychronaki, A., & Goossens, R. (2012). Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation. International Journal of Applied Earth Observation and Geoinformation, 14(1), 1-11. https://doi.org/10.1016/j.jag.2011.08.004
]Search in Google Scholar
[
Vergara, D. C. D. M., Canlas, C. P. I., & Blanco, A. C. (2024). Mapping and assessment of burned areas in Rizal, Palawan using SAR burned and vegetation indices. Proceedings of SPIE, Eighth Geoinformation Science Symposium 2023: Geoinformation Science for Sustainable Planet, 12977. https://doi.org/10.1117/12.3009673
]Search in Google Scholar
[
Weir, J. K., Sutton, S., & Catt, G. (2020). The theory/practice of disaster justice: Learning from indigenous peoples’ fire management. Natural hazards and disaster justice: Challenges for Australia and its neighbours, 299-317. https://doi.org/10.1007/9
]Search in Google Scholar
[
Wiebe, K. L. (2001). Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? The Auk, 118(2), 412-421. https://doi.org/10.1093/auk/118.2.412
]Search in Google Scholar