[
Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: a review. Environmental Systems Research, 9(1), 1-29. Bruneau, R. (2005). Watershed Management Research: (No. 18; Issue March).
]Search in Google Scholar
[
Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees. Agricultural Ecosystems & Environment, 104, 185–228.
]Search in Google Scholar
[
Cheng, G., & Li, X. (2015). Integrated research methods in watershed science. Science China Earth Sciences, 58, 1159-1168.
]Search in Google Scholar
[
Tufa, F. G., & Feyissa, T. A. (2018). Morphometric analysis of Kito and Awetu sub-basins, Jimma, Ethiopia. American Journal of Water Science and Engineering, 4(3), 80-90.
]Search in Google Scholar
[
Strahler, A. N. (1954). Quantitative geomorphology of erosional landscapes. In: 19th International Geologic Congress, Section XIII, pp 341–354.
]Search in Google Scholar
[
Gebre, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed. April, 177.
]Search in Google Scholar
[
Zeleke, G. (2004). Integrated watershed management experiences in eastern and central Africa: Lessons from Ethiopia. In: Bekele Shiferaw & KPC Rao, 73.
]Search in Google Scholar
[
MoARD (Ministry of Agriculture and Rural Development). (2005). Guide line for integrated watershed management, Addis Ababa, Ethiopia.
]Search in Google Scholar
[
Yaebiyo, G. M., Yayneshet, T., Dereje, A., & Kiros, H. (2015). Ecological benefits of integrated watershed management: the case of Sheka watershed, Ethiopia. Journal of Natural Sciences Research, 5(11), 71-80.
]Search in Google Scholar
[
Nyamekye, C., Thiel, M., Schönbrodt-Stitt, S., Zoungrana, B. J. B., & Amekudzi, L. K. (2018). Soil and water conservation in Burkina Faso, West Africa. Sustainability, 10(9), 3182.
]Search in Google Scholar
[
Giordano, M., & Langan, S. (2016). An assessment of integrated watershed management in Ethiopia (No. 170).
]Search in Google Scholar
[
Gravelius, H. (1941). Flusskunde. Goschen’sche Verlagshandlung, Berlin.
]Search in Google Scholar
[
Basuki, T. M., Nugroho, H. Y. S. H., Indrajaya, Y., Pramono, I. B., Nugroho, N. P., Supangat, A. B., ... & Simarmata, D. P. (2022). Improvement of integrated watershed management in Indonesia for mitigation and adaptation to climate change: a review. Sustainability, 14(16), 9997.
]Search in Google Scholar
[
United Nations Environment Programme. International Resource Panel, United Nations Environment Programme. Sustainable Consumption & Production Branch. (2011). Decoupling natural resource use and environmental impacts from economic growth. UNEP/Earthprint.
]Search in Google Scholar
[
Karpuzcu, M., & Delipinar, S. (2014). Integrated watershed management: socio-economic perspective integrated watershed management: socio-. March.
]Search in Google Scholar
[
Al-Saady, Y., Merkel, B., Al-Tawash, B., & Al-Suhail, Q. (2015). Land use and land cover (LULC) mapping and change detection in the Little Zab River Basin (LZRB), Kurdistan Region, NE Iraq and NW Iran. FOG-Freiberg Online Geoscience, 43.
]Search in Google Scholar
[
Gebremedhin, M. A., Kahsay, G. H., & Fanta, H. G. (2018). Assessment of spatial distribution of aridity indices in Raya Valley, northern Ethiopia. Applied Water Science, 8, 1-8.
]Search in Google Scholar
[
Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Applied Water Science, 7, 3825-3840.
]Search in Google Scholar
[
Thomas, B. F., Landerer, F. W., Wiese, D. N., & Famiglietti, J. S. (2016). A comparison of watershed storage trends over the eastern and upper Midwestern regions of the United States, 2003–2015. Water Resources Research, 52(8), 6335-6347.
]Search in Google Scholar
[
Preety, K., Prasad, A. K., Varma, A. K., & El-Askary, H. (2022). Accuracy assessment, comparative performance, and enhancement of public domain digital elevation models (ASTER 30 m, SRTM 30 m, CARTOSAT 30 m, SRTM 90 m, MERIT 90 m, and TanDEM-X 90 m) using DGPS. Remote Sensing, 14(6), 1334.
]Search in Google Scholar
[
Krysanova, V., & White, M. (2015). Advances in water resources assessment with SWAT—an overview. Hydrological Sciences Journal, 60(5), 771-783.
]Search in Google Scholar
[
Rahaman, M. F., Jahan, C. S., Arefin, R., & Mazumder, Q. H. (2017). Morphometric analysis of major watersheds in Barind Tract, Bangladesh: a remote sensing and GIS-based approach for water resource management. Hydrology, 5(6), 86-95.
]Search in Google Scholar
[
Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1-23.
]Search in Google Scholar
[
Ariza-Villaverde, A. B., Jiménez-Hornero, F. J., & De Ravé, E. G. (2015). Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology, 241, 243-254.
]Search in Google Scholar
[
Akram, F., Rasul, M., Khan, M., & Amir, M. S. (2012). Automatic delineation of drainage networks and catchments using DEM data and GIS capabilities: A case study.
]Search in Google Scholar
[
Dubey, S. K., Sharma, D., & Mundetia, N. (2015). Morphometric analysis of the Banas River Basin using the geographical information system, Rajasthan, India. Hydrology ISSN, 2330-7609.
]Search in Google Scholar
[
Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.
]Search in Google Scholar
[
Farhan, Y., & Anaba, O. (2016). A remote sensing and GIS approach for prioritization of Wadi Shueib mini-watersheds (Central Jordan) based on morphometric and soil erosion susceptibility analysis. Journal of Geographic Information System, 8(01), 1.
]Search in Google Scholar
[
Farhan, Y. (2017). Morphometric assessment of Wadi Wala watershed, Southern Jordan using ASTER (DEM) and GIS. Journal of Geographic Information System, 9(02), 158.
]Search in Google Scholar
[
Horton, R. E. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, 13(1), 350–361.
]Search in Google Scholar
[
Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370.
]Search in Google Scholar
[
Smith, J. M. (1950). Introduction to chemical engineering thermodynamics.
]Search in Google Scholar
[
Schumn, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy. Geological Society of America Bulletin, 67, 597-646.
]Search in Google Scholar
[
Sukristiyanti, S., Soetomo, M., Amin, A., & Ipung, H. P. (2017). Improvement of service operation capability in XYZ Bank of “Cash Management” by using IT service management (Doctoral dissertation, Swiss German University).
]Search in Google Scholar
[
Pareta, K. U. (2011). Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences, 2(1), 248.
]Search in Google Scholar
[
Panda, S. P. A. (2016). Quantitative analysis of Baitarani drainage basin (Odisha) using geographical information system. Vistas in Geological Research, Special Publication in Geology (14), 165-176.
]Search in Google Scholar
[
Andreassian, V. (2004). Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291, 1–27.
]Search in Google Scholar
[
Bao, Q., & Laituri, M. (2013). The effects of watershed characteristics on storm runoff relationships in Vietnam. Journal of Environmental Sciences and Water Research, 2, 040.
]Search in Google Scholar