1. bookVolumen 15 (2022): Heft 3 (December 2022)
20 Jun 2008
3 Hefte pro Jahr
Uneingeschränkter Zugang

Assessment of Urban Expansion and Identification of Sprawl Through Delineation of Urban Core Boundary

Online veröffentlicht: 08 Dec 2022
Volumen & Heft: Volumen 15 (2022) - Heft 3 (December 2022)
Seitenbereich: 102 - 120
Eingereicht: 19 Jun 2022
Akzeptiert: 25 Oct 2022
20 Jun 2008
3 Hefte pro Jahr

Alsharif, A. A. A., Pradhan, B., Mansor, S., & Shafri, H. Z. M. (2015). Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: A case study of Tripoli, Libya. Theoretical and Empirical Researches in Urban Management, 10(1), 55–71. Search in Google Scholar

Angel, S., Sheppard, S. C., & Civco, D. L. (2005). The Dynamics of Global Urban Expansion. The World Bank, September, 205. http://www.citiesalliance.org/sites/citiesalliance.org/files/CA_Docs/resources/upgrading/urban-expansion/worldbankreportsept2005.pdf Search in Google Scholar

Anguluri, R., & Narayanan, P. (2017). Role of green space in urban planning: Outlook towards smart cities. Urban Forestry and Urban Greening, 25, 58–65. https://doi.org/10.1016/j.ufug.2017.04.007 Search in Google Scholar

Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265–275. https://doi.org/10.1016/j.jag.2011.12.014 Search in Google Scholar

Barnes, K., Morgan, J., Roberge, M., & Lowe, S. (2001). Sprawl Development: Its Patterns, Consequences, and Measurement. Annals of Physics, 54, 24. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0 Search in Google Scholar

Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2018). Modelling urban dynamics in rapidly urbanizing Indian cities. Egyptian Journal of Remote Sensing and Space Science, 21(3), 201–210. https://doi.org/10.1016/j.ejrs.2017.08.002 Search in Google Scholar

Bhatta, B. (2009). Modelling of urban growth boundary using geoinformatics. International Journal of Digital Earth, 2(4), 359–381. https://doi.org/10.1080/17538940902971383 Search in Google Scholar

Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740. https://doi.org/10.1016/j.apgeog.2010.02.002 Search in Google Scholar

Bourne, L. S. (2001). Myths, Realities and Hidden Agendas. Plan Canada, 41(4), 26–28. Search in Google Scholar

Brueckner, J. K. (2000). Urban sprawl: Diagnosis and remedies. International Regional Science Review, 23(2), 160–171. https://doi.org/10.1177/016001700761012710 Search in Google Scholar

Brueckner, J. K., & Fansler, D. A. (2006). The Economics of Urban Sprawl: Theory and Evidence on the Spatial Sizes of Cities. The Review of Economics and Statistics, 65(3), 479. https://doi.org/10.2307/1924193 Search in Google Scholar

Christiansen, P., & Loftsgarden, T. (2011). Drivers behind Urban Sprawl in Europe (Issue May). https://www.toi.no/getfile.php/Publikasjoner/TØIrapporter/2011/1136-2011/1136- 2011-el.pdf Search in Google Scholar

Dahal, K. R., Benner, S., & Lindquist, E. (2018). Analyzing Spatiotemporal Patterns of Urbanization in Treasure Valley, Idaho, USA. Applied Spatial Analysis and Policy, 11(2), 205–226. https://doi.org/10.1007/s12061-016-9215-1 Search in Google Scholar

Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206. https://doi.org/10.1080/01431160701294661 Search in Google Scholar

Ewing, R., Pendall, R., & Chen, D. (2007). Measuring Sprawl and Its Transportation Impacts. Transportation Research Record: Journal of the Transportation Research Board, 1831(1), 175–183. https://doi.org/10.3141/1831-20 Search in Google Scholar

Gavrilidis, A. A., Niță, M. R., Onose, D. A., Badiu, D. L., & Năstase, I. I. (2019). Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecological Indicators, 96(October), 67–78. https://doi.org/10.1016/j.ecolind.2017.10.054 Search in Google Scholar

Gowri, V. S., Ramachandran, S., Ramesh, R., Pramiladevi, I. R. R., & Krishnaveni, K. (2008). Application of GIS in the study of mass transport of pollutants by Adyar and Cooum Rivers in Chennai, Tamilnadu. Environmental Monitoring and Assessment, 138(1–3), 41–49. https://doi.org/10.1007/s10661-007-9789-917562203 Search in Google Scholar

Grand, J., DeLuca, W. V., McGarigal, K., Compton, B. W., Plunkett, E. B., & Willey, L. L. (2018). Modeling non-stationary urban growth: The SPRAWL model and the ecological impacts of development. Landscape and Urban Planning, 177(October 2017), 178–190. https://doi.org/10.1016/j.landurbplan.2018.04.018 Search in Google Scholar

Grigorescu, I., Kucsicsa, G., Popovici, E. A., Mitrică, B., Mocanu, I., & Dumitraşcu, M. (2021). Modelling land use/cover change to assess future urban sprawl in Romania. Geocarto International, 36(7), 721–739. https://doi.org/10.1080/10106049.2019.1624981 Search in Google Scholar

Habibi, S., & Asadi, N. (2011). Causes, results and methods of controlling urban sprawl. Procedia Engineering, 21, 133–141. https://doi.org/10.1016/j.proeng.2011.11.1996 Search in Google Scholar

Hayden, D. (2004). A field guide to sprawl. WW Norton & Company. Search in Google Scholar

He, Q., Zeng, C., Xie, P., Tan, S., & Wu, J. (2019). Comparison of urban growth patterns and changes between three urban agglomerations in China and three metropolises in the USA from 1995 to 2015. Sustainable Cities and Society, 50(April), 101649. https://doi.org/10.1016/j.scs.2019.101649 Search in Google Scholar

Hong, G., Zhang, A., Zhou, F., & Brisco, B. (2014). Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. International Journal of Applied Earth Observation and Geoinformation, 28(1), 12–19. https://doi.org/10.1016/j.jag.2013.10.003 Search in Google Scholar

Jain, S., Kohli, D., & Rao, R. M. (2011). Spatial Metrics to Analyze the Impact of Regional Factors on Pattern of Urbanization in Gurgaon, India. 39(June), 203–212. https://doi.org/10.1007/s12524-011-0088-0 Search in Google Scholar

Jat, M. K., Garg, P. K., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 10(1), 26–43. https://doi.org/10.1016/j.jag.2007.04.002 Search in Google Scholar

Jayaprakash, M., Senthil Kumar, R., Giridharan, L., Sujitha, S. B., Sarkar, S. K., & Jonathan, M. P. (2015). Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicology and Environmental Safety, 120, 243–255. https://doi.org/10.1016/j.ecoenv.2015.05.04226092556 Search in Google Scholar

Kantakumar, L. N., Kumar, S., & Schneider, K. (2015). Spatiotemporal urban expansion in Search in Google Scholar

Pune metropolis, India using remote sensing. Habitat International, 51, 11–22. https://doi.org/10.1016/j.habitatint.2015.10.007 Search in Google Scholar

Kantakumar, L. N., Kumar, S., & Schneider, K. (2016). Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51, 11–22. https://doi.org/10.1016/j.habitatint.2015.10.007 Search in Google Scholar

Ke, X., Qi, L., & Zeng, C. (2016). A partitioned and asynchronous cellular automata model for urban growth simulation. International Journal of Geographical Information Science, 30(4), 637–659. https://doi.org/10.1080/13658816.2015.1084510 Search in Google Scholar

Lal, K., Kumar, D., & Kumar, A. (2017). Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques. Egyptian Journal of Remote Sensing and Space Science, 20(1), 91–102. https://doi.org/10.1016/j.ejrs.2017.01.003 Search in Google Scholar

Liu, X., Li, X., Chen, Y., Tan, Z., Li, S., & Ai, B. (2010). A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landscape Ecology, 25(5), 671–682. https://doi.org/10.1007/s10980-010-9454-5 Search in Google Scholar

Long, Y., Han, H., Lai, S. K., & Mao, Q. (2013). Urban growth boundaries of the Beijing Metropolitan Area: Comparison of simulation and artwork. Cities, 31, 337–348. https://doi.org/10.1016/j.cities.2012.10.013 Search in Google Scholar

Mahtta, R., Fragkias, M., Güneralp, B., Mahendra, A., Reba, M., Wentz, E. A., & Seto, K. C. (2022). Urban land expansion: the role of population and economic growth for 300+ cities. In npj Urban Sustainability (Vol. 2, Issue 1). https://doi.org/10.1038/s42949-022-00048-y Search in Google Scholar

Maithani, S. (2010). Cellular Automata Based Model of Urban Spatial Growth. Journal of the Indian Society of Remote Sensing, 38(4), 604–610. https://doi.org/10.1007/s12524-010-0053-3 Search in Google Scholar

Martellozzo, F., & Clarke, K. C. (2011). Measuring urban sprawl, coalescence, and dispersal: A case study of Pordenone, Italy. Environment and Planning B: Planning and Design, 38(6), 1085–1104. https://doi.org/10.1068/b36090 Search in Google Scholar

Mohammadi, J., Zarabi, A., & Mobaraki, O. (2012). Urban Sprawl Pattern and Effective Factors on Them : the Case of Urmia City, Iran. Geography, IV, 77–89. Search in Google Scholar

Mondal, B., Das, D. N., & Dolui, G. (2015). Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Modeling Earth Systems and Environment, 1(4), 1–13. https://doi.org/10.1007/s40808-015-0026-1 Search in Google Scholar

Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004 Search in Google Scholar

Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and Multi-layer Perceptron-Markov chain models. Remote Sensing, 7(5), 5918–5950. https://doi.org/10.3390/rs70505918 Search in Google Scholar

Padmanaban, R., Bhowmik, A. K., Cabral, P., Zamyatin, A., Almegdadi, O., & Wang, S. (2017). Modelling urban sprawl using remotely sensed data: A case study of Chennai city, Tamilnadu. Entropy, 19(4). https://doi.org/10.3390/e19040163 Search in Google Scholar

Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957–988. https://doi.org/10.1080/10106049.2019.1629647 Search in Google Scholar

Parvinnezhad, D., Delavar, M. R., Claramunt, C., & Pijanowski, B. C. (2021). A modified spatial entropy for urban sprawl assessment. Geocarto International, 36(16), 1804–1819. https://doi.org/10.1080/10106049.2019.1678676 Search in Google Scholar

Pijanowski, B.., Tayyebi, A., Delavar, M. R., & Yazdanpanah, M. J. (2009). Urban expansion simulation using geospatial information system and artificial neural networks. International Journal of Environmental Research, 3(4), 495–502. Search in Google Scholar

Ramachandra, T. V., Aithal, B. H., & Sowmyashree, M. V. (2014). Urban structure in Kolkata: metrics and modelling through geo-informatics. Applied Geomatics, 6(4), 229–244. https://doi.org/10.1007/s12518-014-0135-y Search in Google Scholar

Ramachandra, T. V., Bharath, A. H., & Sowmyashree, M. V. (2015). Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. Journal of Environmental Management, 148, 67–81. https://doi.org/10.1016/j.jenvman.2014.02.01524768450 Search in Google Scholar

Ramachandra, T. V, Bharath, H. A., & Sowmyashree, M. V. (2014). Urban footprint of Mumbai - the commercial capital of India. Journal of Urban and Regional Analysis, 6(1), 71–94. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904006635&partnerID=40&md5=55006c6860115bd88f73dbda359dfb78 Search in Google Scholar

Raman, N., & Sathiya Narayanan, D. (2008). Impact of solid waste effect on ground water and soil quality nearer to pallavaram solid waste landfill site in Chennai. Rasayan Journal of Chemistry, 1(4), 828–836. Search in Google Scholar

Rastogi, K., & Jain, G. V. (2018). Urban Sprawl Analysis Using Shannon’S Entropy and Fractal Analysis: a Case Study on Tiruchirappalli City, India. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII5(November), 761–766. https://doi.org/10.5194/isprs-archives-xlii-5-761-2018 Search in Google Scholar

Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 628629, 1557–1566. https://doi.org/10.1016/j.scitotenv.2018.02.17030045573 Search in Google Scholar

Schneider, A., & Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Studies, 45(3), 659–692. https://doi.org/10.1177/0042098007087340 Search in Google Scholar

Shafizadeh Moghadam, H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. https://doi.org/10.1016/j.apgeog.2013.01.009 Search in Google Scholar

Sridhar, M. B., & Sathyanathan, R. (2022). Spatiotemporal Patterns of Urbanization in Chennai City, Tamil Nadu, India Using Remote Sensing Data. Lecture Notes in Civil Engineering, 191, 23–34. https://doi.org/10.1007/978-981-16-5839-6_3 Search in Google Scholar

Stefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V., Knorn, J., Korol, N., Sieber, A., & Waske, B. (2014). Mapping land management regimes in western Ukraine using optical and SAR data. Remote Sensing, 6(6), 5279–5305. https://doi.org/10.3390/rs6065279 Search in Google Scholar

Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39. https://doi.org/10.1016/j.jag.2003.08.002 Search in Google Scholar

Tang, J., Wang, L., & Yao, Z. (2006). Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images. GIScience and Remote Sensing, 43(3), 218–232. https://doi.org/10.2747/1548-1603.43.3.218 Search in Google Scholar

Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India - Spatiotemporal analysis using remote sensing data. Computers, Environment and Urban Systems, 33(3), 179–188. https://doi.org/10.1016/j.compenvurbsys.2008.09.003 Search in Google Scholar

Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011). An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape and Urban Planning, 100(1–2), 35–44. https://doi.org/10.1016/j.landurbplan.2010.10.007 Search in Google Scholar

Triantakonstantis, D., & Stathakis, D. (2015). Examining urban sprawl in Europe using spatial metrics. Geocarto International, 30(10), 1092–1112. https://doi.org/10.1080/10106049.2015.1027289 Search in Google Scholar

Weng, Q. (2001). A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014. https://doi.org/10.1080/713860788 Search in Google Scholar

Xu, C., Liu, M., Zhang, C., An, S., Yu, W., & Chen, J. M. (2007). The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecology, 22(6), 925–937. https://doi.org/10.1007/s10980-007-9079-5 Search in Google Scholar

Yeh, A. G. O., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing, 67(1), 83–90. Search in Google Scholar

Yue, W., Liu, Y., & Fan, P. (2013). Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy, 31, 358–370. https://doi.org/10.1016/j.landusepol.2012.07.018 Search in Google Scholar

Zhao, C., Li, Y., & Weng, M. (2021). A fractal approach to urban boundary delineation based on raster land use maps: A case of shanghai, china. Land, 10(9). https://doi.org/10.3390/land10090941 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo