Uneingeschränkter Zugang

Modeling and Mapping of Soil Water Erosion Risks in the Srou Basin (Middle Atlas, Morocco) Using the EPM Model, GIS and Magnetic Susceptibility


Zitieren

Ahmadi, M., M. Minaei, O. Ebrahimi and M. Nikseresht (2019). Evaluation of WEPP and EPM for improved predictions of soil erosion in mountainous watersheds: A case study of Kangir River basin, Iran.10.1007/s40808-020-00814-w Search in Google Scholar

Ahmed, A., D. Adil, B. Hasna, A. Elbachir and R. Lazaar (2019). Using EPM model and GIS for estimation of soil erosion in Souss Basin, Morocco. Turkish Journal of Agriculture-Food Science and Technology 7(8): 1228-1232. Search in Google Scholar

Al Karkouri, J. (2003). Degradation of the natural environment in the Beni Boufrah basin (Central Rif Morocco): analysis of factors and processes, quantification test and spatial modelling. State doctoral thesis Mohammed V University, Faculty of Letters, Rabat Search in Google Scholar

Allison, S. D., M. D. Wallenstein and M. A. Bradford (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience 3(5): 336-340 DOI: 10.1038/ngeo846. Open DOISearch in Google Scholar

Anejionu, O. C., P. C. Nwilo and E. S. Ebinne (2013). Long Term Assessment and Mapping of Erosion Hotspots in South East Nigeria. FIG Working Week. Search in Google Scholar

Arocena, J. M. and C. Opio (2003). Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113(1): 1-16 DOI: https://doi.org/10.1016/S0016-7061(02)00312-9. Search in Google Scholar

Ayoubi, S. and S. M. Dehaghani (2020). Identifying impacts of land use change on soil redistribution at different slope positions using magnetic susceptibility. Arabian Journal of Geosciences 13: 426. Search in Google Scholar

Bachaoui, B., E. M. Bachaoui, S. Maimouni, R. Lhissou, A. El Harti and A. El Ghmari (2014). The use of spectral and geomorphometric data for water erosion mapping in El Ksiba region in the central High Atlas Mountains of Morocco. Applied Geomatics 6(3): 159-169. Search in Google Scholar

Barbosa, R. S., J. M. Júnior, V. Barrón, M. V. Martins Filho, D. S. Siqueira, R. G. Peluco, L. A. Camargo and L. S. Silva (2019). Prediction and mapping of erodibility factors (USLE and WEPP) by magnetic susceptibility in basalt-derived soils in northeastern São Paulo state, Brazil. Environmental earth sciences 78(1): 12. Search in Google Scholar

Batista, P. V. G., J. Davies, M. L. N. Silva and J. N. Quinton (2019). On the evaluation of soil erosion models: Are we doing enough? Earth-Science Reviews 197: 102898 DOI: https://doi.org/10.1016/j.earscirev.2019.102898. Search in Google Scholar

Benmansour, M., L. Mabit, A. Nouira, R. Moussadek, H. Bouksirate, M. Duchemin and A. Benkdad (2013). Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex. Journal of Environmental Radioactivity 115: 97-106 DOI: https://doi.org/10.1016/j.jenvrad.2012.07.013.22898495 Search in Google Scholar

Borrelli, P., D. A. Robinson, P. Panagos, E. Lugato, J. E. Yang, C. Alewell, D. Wuepper, L. Montanarella and C. Ballabio (2020). Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences 117(36): 21994-22001. Search in Google Scholar

Bou-imajjane, L., M. A. Belfoul, R. Elkadiri and M. Stokes (2020). Soil erosion assessment in a semi-arid environment: a case study from the Argana Corridor, Morocco. Environmental Earth Sciences 79(18): 409 DOI: 10.1007/s12665-020-09127-8. Open DOISearch in Google Scholar

Castillo, C., E. V. Taguas, P. Zarco-Tejada, M. R. James and J. A. Gómez (2014). The normalized topographic method: an automated procedure for gully mapping using GIS. Earth Surface Processes and Landforms 39(15): 2002-2015. Search in Google Scholar

Chaaouan, J., A. Faleh, A. Sadiki and H. Mesrar (2013). Remote sensing, GIS and modeling of water erosion in the Amzaz River watershed, Central Rif. French Journal of Photogrammetry and Remote Sensing (203): 19-25 Search in Google Scholar

Chandramohan, T., B. Venkatesh and A. Balchand (2015). Evaluation of three soil erosion models for small watersheds. Aquatic Procedia 4: 1227-1234. Search in Google Scholar

Cheng, H., X. Zou, Y. Wu, C. Zhang, Q. Zheng and Z. Jiang (2007). Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil and Tillage Research 94(1): 4-14. Search in Google Scholar

de Jong, E., P. A. Nestor and D. J. Pennock (1998). The use of magnetic susceptibility to measure long-term soil redistribution. Catena 32(1): 23-35 DOI: https://doi.org/10.1016/S0341-8162(97)00051-9. Search in Google Scholar

Devatha, C., V. Deshpande and M. Renukaprasad (2015). Estimation of soil loss using USLE model for Kulhan Watershed, Chattisgarh-A case study. Aquatic Procedia 4: 1429-1436. Search in Google Scholar

Duan, X., B. Liu, Z. Gu, L. Rong and D. Feng (2016). Quantifying soil erosion effects on soil productivity in the dry-hot valley, southwestern China. Environmental Earth Sciences 75(16): 1164 DOI: 10.1007/s12665-016-5986-6. Open DOISearch in Google Scholar

El Jazouli, A., A. Barakat, A. Ghafiri, S. El Moutaki, A. Ettaqy and R. Khellouk (2017). Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geoscience Letters 4(1): 1-12. Search in Google Scholar

El Jazouli, A., A. Barakat and R. Khellouk (2019a). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters 6(1): 1-12.10.1186/s40677-019-0119-7 Search in Google Scholar

El Jazouli, A., A. Barakat and R. Khellouk (2020). Geotechnical studies for Landslide susceptibility in the high basin of the Oum Er Rbia river (Morocco). Geology, Ecology, and Landscapes: 1-8. Search in Google Scholar

El Jazouli, A., A. Barakat, R. Khellouk, J. Rais and M. El Baghdadi (2019b). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment 13: 361-374.10.1016/j.rsase.2018.12.004 Search in Google Scholar

Elaloui, A., C. Marrakchi, A. Fekri, S. Maimouni and M. Aradi (2017). USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment 3(3): 873-885 DOI: 10.1007/s40808-017-0340-x. Open DOISearch in Google Scholar

Elbouqdaoui, K., H. Ezzine, M. Badrahoui, M. Rouchdi, M. Zahraoui and A. Ozer (2005). Methodological approach by remote sensing and GIS of the evaluation of the potential erosion risk by water in the Srou River watershed (Middle Atlas, Morocco). Geo-Eco-Trop 29(1-2): 25-36. Search in Google Scholar

Fang, H. and Z. Fan (2020). Assessment of Soil Erosion at Multiple Spatial Scales Following Land Use Changes in 1980–2017 in the Black Soil Region,(NE) China. International Journal of Environmental Research and Public Health 17(20): 7378. Search in Google Scholar

Faulkner, H., R. Alexander, R. Teeuw and P. Zukowskyj (2004). Variations in soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation. Earth Surface Processes and Landforms: the Journal of the British Geomorphological Research Group 29(9): 1143-1160. Search in Google Scholar

Gaspar, L., A. Navas, D. Walling, J. Machín and J. G. Arozamena (2013). Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 102: 46-54. Search in Google Scholar

Gavrilovic, S. (1972). Inzenjering o bujicnim tokovima i eroziji. Izgradnja. Beograd. Search in Google Scholar

Gavrilović, S. (1962). Proračun srednje-godišnje količine nanosa prema potencijalu erozije (A method for estimating of the average annual quantity of sediments according to the potency of erosion). Glasnik šumarskog fakulteta 26: 151-168. Search in Google Scholar

Gavrilovic, Z. (1988). Use of an Empirical Method (Erosion Potential Method) for Calculating Sediment Production and Transportation in Unstudied or Torrential Streams. International Conference on River Regime. Hydraulics Research Limited, Wallingford, Oxon UK. 1988. p 411-422, 5 fig, 4 tab, 8 ref. Search in Google Scholar

Gianinetto, M., M. Aiello, F. Polinelli, F. Frassy, M. C. Rulli, G. Ravazzani, D. Bocchiola, D. D. Chiarelli, A. Soncini and R. Vezzoli (2019). D-RUSLE: A dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps. European Journal of Remote Sensing 52 (sup4): 34-53. Search in Google Scholar

Haubrock, S.-N., M. Kuhnert, S. Chabrillat, A. Güntner and H. Kaufmann (2009). Spatiotemporal variations of soil surface roughness from in-situ laser scanning. Catena 79(2): 128-139. Search in Google Scholar

Hou, X., J. Shao, X. Chen, J. Li and J. Lu (2020). Changes in the soil erosion status in the middle and lower reaches of the Yangtze River basin from 2001 to 2014 and the impacts of erosion on the water quality of lakes and reservoirs. International Journal of Remote Sensing 41(8): 3175-3196 DOI: 10.1080/01431161.2019.1699974. Open DOISearch in Google Scholar

Hout, R., V. Maleval, G. Mahe, E. Rouvellac, R. Crouzevialle and F. Cerbelaud (2020). UAV and LiDAR Data in the Service of Bank Gully Erosion Measurement in Rambla de Algeciras Lakeshore. Water 12(10): 2748. Search in Google Scholar

IAEA (The International Atomic Energy Agency) (2016). Erosion in Moroccan Watersheds Can Be Reduced up to 60 Percent Through the Use of Isotopic Techniques. Retrieved April, 2nd, 2021 from https://urlz.fr/hSCG, page consulted on 02/04/2022. Search in Google Scholar

Inbar, A., M. Lado, M. Sternberg, H. Tenau and M. Ben-Hur (2014). Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma 221-222: 131-138 DOI: https://doi.org/10.1016/j.geoderma.2014.01.015. Search in Google Scholar

Issaka, S. and M. A. Ashraf (2017). Impact of soil erosion and degradation on water quality: a review. Geology, Ecology, and Landscapes 1(1): 1-11 DOI: 10.1080/24749508.2017.1301053. Open DOISearch in Google Scholar

Jakšík, O., R. Kodešová, A. Kapička, A. Klement, M. Fer and A. Nikodem (2016). Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil and Water Research 11(2): 105-113. Search in Google Scholar

Jazouli, A. E., A. Barakat, R. Khellouk, J. Rais and M. E. Baghdadi (2019). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment 13: 361-374 DOI: https://doi.org/10.1016/j.rsase.2018.12.004. Search in Google Scholar

Jihad, M.-D. E. (2010). Difficulties in natural resources managing and rural development in an anthropized environment: Experience of the Oued Srou Project (central Morocco). Norois. Environment, planning, society (216): 25-45. Search in Google Scholar

Ketema, A. and G. S. Dwarakish (2019). Water erosion assessment methods: a review. ISH Journal of Hydraulic Engineering: 1-8 DOI: 10.1080/09715010.2019.1567398. Open DOISearch in Google Scholar

Kinnell, P. I. A. (2017). A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas. Science of The Total Environment 596-597: 32-42 DOI: https://doi.org/10.1016/j.scitotenv.2017.04.046.28412569 Search in Google Scholar

Laflen, J. M., L. J. Lane and G. R. Foster (1991). WEPP: A new generation of erosion prediction technology. Journal of Soil and Water Conservation 46(1): 34-38. Search in Google Scholar

Lal, R. (2003). Soil erosion and the global carbon budget. Environment international 29(4): 437-450. Search in Google Scholar

Lal, R., D. Mokma and B. Lowery (1999). Relation between soil quality and erosion. Soil quality and soil erosion 4: 237-258. Search in Google Scholar

Le Borgne, E. (1955). Abnormal magnetic susceptibility of the surface soil. Ann. Geophys.: 399-419. Search in Google Scholar

Liu, L., K. Zhang, S. Fu, B. Liu, M. Huang, Z. Zhang, F. Zhang and Y. Yu (2019). Rapid magnetic susceptibility measurement for obtaining superficial soil layer thickness and its erosion monitoring implications. Geoderma 351: 163-173. Search in Google Scholar

Luetzenburg, G., M. J. Bittner, A. Calsamiglia, C. S. Renschler, J. Estrany and R. Poeppl (2020). Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz–Austria, Can Revull–Spain. Science of The Total Environment 704: 135389. Search in Google Scholar

Markhi, A., N. Laftouhi, Y. Grusson and A. Soulaimani (2019). Assessment of potential soil erosion and sediment yield in the semi-arid N′fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica 67(1): 263-272 DOI: 10.1007/s11600-019-00251-z. Open DOISearch in Google Scholar

Martín-Moreno, C., J. F. Martín Duque, J. M. Nicolau Ibarra, N. Hernando Rodríguez, M. Á. Sanz Santos and L. Sánchez Castillo (2016). Effects of Topography and Surface Soil Cover on Erosion for Mining Reclamation: The Experimental Spoil Heap at El Machorro Mine (Central Spain). Land Degradation & Development 27(2): 145-159 DOI: https://doi.org/10.1002/ldr.2232. Search in Google Scholar

Menshov, O., O. Kruglov, S. Vyzhva, P. Nazarok, P. Pereira and T. Pastushenko (2018). Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine. Studia Geophysica et Geodaetica 62(4): 681-696. Search in Google Scholar

Merritt, W. S., R. A. Letcher and A. J. Jakeman (2003). A review of erosion and sediment transport models. Environmental Modelling & Software 18(8-9): 761-799. Search in Google Scholar

Merzouk, A. (1985). Relative erodibility of nine selected Moroccan soils related to their physical and chemical and mineralogical properties, Ph-D Thesis, University of Minnesota, USA. Search in Google Scholar

Mohamed, R. (2021). The Risk of Water Erosion on the Foothills of the Middle High Atlas (Morocco). Tagueleft Basin Case Study. Search in Google Scholar

Mohammed, S., A. Al-Ebraheem, I. J. Holb, K. Alsafadi, M. Dikkeh, Q. B. Pham, N. T. T. Linh and S. Szabo (2020). Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. Water 12(9): 2529. Search in Google Scholar

Morgan, R., J. Quinton and R. Rickson (1992). EUROSEM documentation manual. Silsoe College, Silsoe, Bedford, UK: 34. Search in Google Scholar

Mosavi, A., F. Sajedi-Hosseini, B. Choubin, F. Taromideh, G. Rahi and A. A. Dineva (2020). Susceptibility mapping of soil water erosion using machine learning models. Water 12(7): 1995. Search in Google Scholar

Novara, A., A. Pisciotta, M. Minacapilli, A. Maltese, F. Capodici, A. Cerdà and L. Gristina (2018). The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Science of The Total Environment 622-623: 474-480 DOI: https://doi.org/10.1016/j.scitotenv.2017.11.272.29223076 Search in Google Scholar

Panagos, P. and A. Katsoyiannis (2019). Soil erosion modelling: The new challenges as the result of policy developments in Europe, Elsevier.10.1016/j.envres.2019.02.04330844572 Search in Google Scholar

Plambeck, N. O. (2020). Reassessment of the potential risk of soil erosion by water on agricultural land in Germany: Setting the stage for site-appropriate decision-making in soil and water resources management. Ecological Indicators 118: 106732. Search in Google Scholar

Porto, P., D. E. Walling and A. Capra (2014). Using 137Cs and 210Pbex measurements and conventional surveys to investigate the relative contributions of interrill/rill and gully erosion to soil loss from a small cultivated catchment in Sicily. Soil and Tillage Research 135: 18-27. Search in Google Scholar

Rãdoane, M. and N. Rãdoane (2005). Dams, sediment sources and reservoir silting in Romania. Geomorphology 71(1): 112-125 DOI: https://doi.org/10.1016/j.geomorph.2004.04.010. Search in Google Scholar

Rawat, K. S. and S. K. Singh (2018). Appraisal of Soil Conservation Capacity Using NDVI Model-Based C Factor of RUSLE Model for a Semi Arid Ungauged Watershed: a Case Study. Water Conservation Science and Engineering 3(1): 47-58 DOI: 10.1007/s41101-018-0042-x. Open DOISearch in Google Scholar

Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), United States Government Printing. Search in Google Scholar

Rozos, D., H. D. Skilodimou, C. Loupasakis and G. D. Bathrellos (2013). Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences 70(7): 3255-3266. Search in Google Scholar

Saxton, K. E. and W. J. Rawls (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil science society of America Journal 70(5): 1569-1578. Search in Google Scholar

Senanayake, S., B. Pradhan, A. Huete and J. Brennan (2020). A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-Informatics Technology for Farming System Management. Remote Sensing 12(24): 4063. Search in Google Scholar

Simonneaux, V., A. Cheggour, C. Deschamps, F. Mouillot, O. Cerdan and Y. Le Bissonnais (2015). Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). Journal of Arid Environments 122: 64-75 DOI: https://doi.org/10.1016/j.jaridenv.2015.06.002. Search in Google Scholar

Smith, H. (1999). Application of empirical soil loss models in southern Africa: A review. South African Journal of Plant and Soil 16(3): 158-163. Search in Google Scholar

Staut, M. (2004). Recent erosional processes in the catchment of the Dragonja river. Unpublished graduate thesis. Faculty of Arts, University of Ljubljana, Ljubljana.(In Serbian). Search in Google Scholar

Sthiannopkao, S., S. Takizawa, J. Homewong and W. Wirojanagud (2007). Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand. Environment International 33(5): 706-711 DOI: https://doi.org/10.1016/j.envint.2006.12.007.17275087 Search in Google Scholar

Taheri, M., A. Landi and B. Archangi (2013). Using Rs, GIS systems and MPSIAC model to produce erosion map and to estimate sedimentation. International Journal of Agriculture 3(4): 881. Search in Google Scholar

Tak, W., K. Jun, S. Kim and H. Lee (2020). Using Drone and LiDAR to Assess Coastal Erosion and Shoreline Change due to the Construction of Coastal Structures. Journal of Coastal Research 95(SI): 674-678. Search in Google Scholar

Terefe, T., I. Mariscal-Sancho, F. Peregrina and R. Espejo (2008). Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma 143(3-4): 273-280 DOI: 10.1016/j.geoderma.2007.11.018. Open DOISearch in Google Scholar

Thompson, R., R. W. Battarbee, P. O’sullivan and F. Oldfield (1975). Magnetic susceptibility of lake sediments. Limnology and Oceanography 20(5): 687-698. Search in Google Scholar

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment 8(2): 127-150. Search in Google Scholar

USDA (1972). Sediment sources, yields, and delivery ratios. National Engineering Handbook, Section 3 Sedimentation. Search in Google Scholar

Viney, N. R. and M. Sivapalan (1999). A conceptual model of sediment transport: application to the Avon River Basin in Western Australia. Hydrological Processes 13(5): 727-743. Search in Google Scholar

Visser, S., G. Sterk and D. Karssenberg (2005). Modelling water erosion in the Sahel: application of a physically based soil erosion model in a gentle sloping environment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 30(12): 1547-1566. Search in Google Scholar

Walling, D. E. and Q. He (1999). Improved Models for Estimating Soil Erosion Rates from Cesium-137 Measurements. Journal of Environmental Quality, John Wiley & Sons, Ltd. 28: 611-622. Search in Google Scholar

Wang, Y., L. Chen, B. Fu and Y. Lü (2014). Check dam sediments: an important indicator of the effects of environmental changes on soil erosion in the Loess Plateau in China. Environmental Monitoring and Assessment 186(7): 4275-4287 DOI: 10.1007/s10661-014-3697-6.24623470 Open DOISearch in Google Scholar

Willams, J. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In present and prospective technology for predicting sediment yields and sources: Proceedings of the Sediment-Yield Workshop ((pp. 244-252), USDA Sedimentation Laboratory, Oxford, Miss., Nov. 28-30, 1972, Agricultural Research Service, U.S. Dept. of Agriculture, 1975. Search in Google Scholar

Wischmeier, W. H. and D. D. Smith (1978). Predicting rainfall erosion losses: a guide to conservation planning, Department of Agriculture, Science and Education Administration. Wu, Y. and H. Cheng (2005). Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 63(2-3): 154-166. Search in Google Scholar

Yuan, Y., D. Xiong, H. Wu, L. Liu, W. Li, C. L. Chidi, N. M. Dahal and N. Neupane (2020). Using 137 Cs and 210 Pb ex to trace soil erosion rates for a small catchment in the mid-hills of Nepal. Journal of Soils and Sediments: 1-16 DOI: 10.1007/s41324-017-0102-x. Open DOISearch in Google Scholar

Yue, Y., Z. Keli, L. Liang, M. Qianhong and L. Jianyong (2019). Estimating long-term erosion and sedimentation rate on farmland using magnetic susceptibility in northeast China. Soil and Tillage Research 187: 41-49. Search in Google Scholar

Zhang, C.-L., S. Yang, X.-H. Pan and J.-Q. Zhang (2011). Estimation of farmland soil wind erosion using RTK GPS measurements and the 137Cs technique: A case study in Kangbao County, Hebei province, northern China. Soil and Tillage Research 112(2): 140-148. Search in Google Scholar

Zorn, M. and B. Komac (2009). Response of soil erosion to land use change with particular reference to the last 200 years (Julian Alps, Western Slovenia). Revista de geomorfologie 11: 39-47. Search in Google Scholar

eISSN:
1805-4196
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
3 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, andere, Biologie, Ökologie