Zitieren

1. Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res. 1999;54:33-59. Search in Google Scholar

2. De Araujo LD, Roa SL, Bueno AC, et al. Restricted Feeding Schedules Modulate in a Different Manner the Expression of Clock Genes in Rat Hypothalamic Nuclei. Front Neurosci. 2016;10:567.10.3389/fnins.2016.00567514158528003802 Search in Google Scholar

3. Buijs FN, Guzmán-Ruiz M, León-Mercado L, et al. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms. eNeuro. 2017;4:28-17.10.1523/ENEURO.0028-17.2017536458928374011 Search in Google Scholar

4. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annu Rev Physiol. 2010;72:551-577.10.1146/annurev-physiol-021909-135919375847520148688 Search in Google Scholar

5. Kalsbeek A, Palm IF, La Fleur SE, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21:458-469.10.1177/074873040629385417107936 Search in Google Scholar

6. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic nucleus lesions in the rat. Brain Res. 1972;42:201-206.10.1016/0006-8993(72)90054-65047187 Search in Google Scholar

7. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci. 1972;69:1583-1586.10.1073/pnas.69.6.15834267534556464 Search in Google Scholar

8. Lehman MN, Silver R, Gladstone WR, et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci. 1987;7:1626-1638.10.1523/JNEUROSCI.07-06-01626.198765688673598638 Search in Google Scholar

9. Sujino M, Masumoto KH, Yamaguchi S, et al. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol. 2003;13:664-668.10.1016/S0960-9822(03)00222-7 Search in Google Scholar

10. Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247:975-978.10.1126/science.23052662305266 Search in Google Scholar

11. Nakamura TJ, Sellix MT, Menaker M, et al. Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol. 2008;295:E1025-1031.10.1152/ajpendo.90392.2008258482018728223 Search in Google Scholar

12. Challet E, Pevet P, Vivien-Roels B, et al. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food restricted rats fed during daytime. J Biol Rhythms. 1997;12:65-79.10.1177/0748730497012001089104691 Search in Google Scholar

13. Vujovic N, Davidson AJ, Menaker M. Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am J Physiol. 2008;295:R355-360.10.1152/ajpregu.00498.2007249482218434440 Search in Google Scholar

14. Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950-2961.10.1101/gad.18350031710011114885 Search in Google Scholar

15. Panda S. Circadian physiology of metabolism. Science. 2016;354:1008-1015.10.1126/science.aah4967726159227885007 Search in Google Scholar

16. Kornmann B, Schaad O, Bujard H, et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2017;5:e34.10.1371/journal.pbio.0050034178367117298173 Search in Google Scholar

17. Zhou L, Kang L, Xiao X, et al. “Gut Microbiota-Circadian Clock Axis” in Deciphering the Mechanism Linking Early-Life Nutritional Environment and Abnormal Glucose Metabolism. Int J Endocrinol. 2019;2019:5893028.10.1155/2019/5893028673259831534453 Search in Google Scholar

18. Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514-529.10.1016/j.cell.2014.09.04825417104 Search in Google Scholar

19. Scheer FAJL, Morris CJ, Shea SA. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring). 2013;21:421-423.10.1002/oby.20351365552923456944 Search in Google Scholar

20. Mehta S, Melhorn SJ, Smeraglio A, et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am J Clin Nutr. 2012;96:989-999.10.3945/ajcn.112.042341347121022990034 Search in Google Scholar

21. Ford ES, Li C, Wheaton AG, et al. Sleep duration and body mass index and waist circumference among U.S. adults. Obesity (Silver Spring). 2014;22:598-607.10.1002/oby.20558458024323836704 Search in Google Scholar

22. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Medicine and Science in Sports and Exercise. 2012;44:1663-1670.10.1249/MSS.0b013e318255cf4c341464522460470 Search in Google Scholar

23. van Moorsel D, Hansen J, Havekes B, et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 2016;5:635-645.10.1016/j.molmet.2016.06.012502167027656401 Search in Google Scholar

24. Andrews JL, Zhang X, McCarthy JJ, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A. 2010;107:19090-19095.10.1073/pnas.1014523107297389720956306 Search in Google Scholar

25. Morris CJ, Purvis TE, Hu K, et al. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113:E1402-1411.10.1073/pnas.1516953113479099926858430 Search in Google Scholar

26. Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell. 2008;134:728-742.10.1016/j.cell.2008.08.022376016518775307 Search in Google Scholar

27. Stojkovic K, Wing SS, Cermakian N. A central role for ubiquitination within a circadian clock protein modification code. Front Mol Neurosci. 2014;7:69.10.3389/fnmol.2014.00069412479325147498 Search in Google Scholar

28. Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014;13:197-216.10.1038/nrd4100486526224577401 Search in Google Scholar

29. Shimba S, Ishii N, Ohta Y, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A. 2005;102:12071-12076.10.1073/pnas.0502383102118931216093318 Search in Google Scholar

30. Curtis AM, Cheng Y, Kapoor S, et al. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A. 2007;104:3450-3455.10.1073/pnas.0611680104180200717360665 Search in Google Scholar

31. Wang N, Yang G, Jia Z, et al. PPARγ Controls Circadian Variation in Blood Pressure and Heart Rate through BMAL1. Cell Metab. 2008;8:482-491.10.1016/j.cmet.2008.10.009548454019041764 Search in Google Scholar

32. Doi M, Takahashi Y, Komatsu R, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16:67-74.10.1038/nm.206120023637 Search in Google Scholar

33. Feng D, Liu T, Sun Z, et al. Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism. Science. 2011;331:1315-1319.10.1126/science.1198125338939221393543 Search in Google Scholar

34. Toh KL. An hPer2 Phosphorylation Site Mutation in Familial Advanced Sleep Phase Syndrome. Science. 2001;291:1040-1043.10.1126/science.105749911232563 Search in Google Scholar

35. Weitzman ED. Delayed Sleep Phase Syndrome. Arch Gen Psychiatry. 1981;38:737.10.1001/archpsyc.1981.017803200170017247637 Search in Google Scholar

36. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004;429:771-776.10.1038/nature02583282024715175761 Search in Google Scholar

37. Frescas D, Valenti L, Accili D. Nuclear Trapping of the Forkhead Transcription Factor FoxO1 via Sirt-dependent Deacetylation Promotes Expression of Glucogenetic Genes. J Biol Chem. 2005;280:20589-20595.10.1074/jbc.M41235720015788402 Search in Google Scholar

38. Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105-117.10.1016/j.cmet.2005.07.00116098828 Search in Google Scholar

39. Zisapel N, Tarrasch R, Laudon M. The Relationship Between Melatonin and Cortisol Rhythms: Clinical Implications of Melatonin. Drug Development Research. 2005;65:119-125.10.1002/ddr.20014 Search in Google Scholar

40. Krieger DT, Allen W, Rizzo F, et al. Characterization of the normal temporal pattern of plasma corticosteroid levels. J Clin Endocrinol Metab. 1971;32:266-284.10.1210/jcem-32-2-2664321505 Search in Google Scholar

41. Weitzman ED, Czeisler CA, Zimmerman JC, et al. Biological rhythms in man: relationship of sleep-wake, cortisol, growth hormone, and temperature during temporal isolation. Adv Biochem Psychopharmacol. 1981;28:475-99. Search in Google Scholar

42. Weibel L, Brandenberger G. The start of the quiescent period of cortisol remains phase locked to the melatonin onset despite circadian phase alterations in humans working the night schedule. Neurosci Lett. 2002;318:89-92.10.1016/S0304-3940(01)02496-X Search in Google Scholar

43. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64:13-23.10.1016/j.metabol.2014.09.010426789625305050 Search in Google Scholar

44. Kim MH, Kim H. Role of Leptin in the Digestive System. Front Pharmacol. 2021;12:660040.10.3389/fphar.2021.660040808640833935782 Search in Google Scholar

45. Simon C, Gronfier C, Schlienger JL, et al. Circadian and Ultradian Variations of Leptin in Normal Man under Continuous Enteral Nutrition: Relationship to Sleep and Body Temperature. J Clin Endocrinol Metab. 1998;83:1893-1899.10.1210/jcem.83.6.48649626115 Search in Google Scholar

46. Kojima M, Kangawa K. Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract. Curr Opin Pharmacol. 2002;2:665-668.10.1016/S1471-4892(02)00220-5 Search in Google Scholar

47. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649-661.10.1016/S0896-6273(03)00063-1 Search in Google Scholar

48. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agoutirelated protein. Endocrinology. 2004;145:2607-2612.10.1210/en.2003-159614962995 Search in Google Scholar

49. Yannielli PC, Molyneux PC, Harrington ME, et al. Ghrelin effects on the circadian system of mice. J Neurosci. 2007;27:2890-2895.10.1523/JNEUROSCI.3913-06.2007667257717360911 Search in Google Scholar

50. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714-1719.10.2337/diabetes.50.8.171411473029 Search in Google Scholar

51. Schmid SM, Hallschmid M, Jauch-Chara K, et al. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res. 2008;17:331-334.10.1111/j.1365-2869.2008.00662.x18564298 Search in Google Scholar

52. Scheer FAJL, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106:4453-4458.10.1073/pnas.0808180106265742119255424 Search in Google Scholar

53. Kohatsu ND, Tsai R, Young T, et al. Sleep duration and body mass index in a rural population. Arch Intern Med. 2006;166:1701-1705.10.1001/archinte.166.16.170116983047 Search in Google Scholar

54. Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: Impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J Clin Endocrinol Metab. 1982;54:131-138.10.1210/jcem-54-1-1317033265 Search in Google Scholar

55. Dinneen S, Alzaid A, Miles J, et al. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest. 1993;92:2283-2290.10.1172/JCI1168322884098227343 Search in Google Scholar

56. Morris CJ, Yang JN, Garcia JI, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci U S A. 2015;112:E2225-2234.10.1073/pnas.1418955112441887325870289 Search in Google Scholar

57. Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26:139-154.10.3109/09540261.2014.911149467777124892891 Search in Google Scholar

58. Lax P, Larue-Achagiotis C, Martel P, et al. Repeated short-fasting modifies the macronutrient self-selection pattern in rats. Physiol Behav. 1998;65:69-76.10.1016/S0031-9384(98)00123-1 Search in Google Scholar

59. Dos Santos ML, Aragon FF, Padovani CR, et al. Daytime variations in glucose tolerance in people with impaired glucose tolerance. Diabetes Res Clin Pract. 2006;74:257-262.10.1016/j.diabres.2006.04.00716730846 Search in Google Scholar

60. Van Cauter EV, Polonsky KS, et al. Abnormal temporal patterns of glucose tolerance in obesity: relationship to sleep-related growth hormone secretion and circadian cortisol rhythmicity. J Clin Endocrinol Metab. 1994;79:1797-805.10.1210/jc.79.6.1797 Search in Google Scholar

61. Macauley M, Smith FE, Thelwall PE, et al. Diurnal variation in skeletal muscle and liver glycogen in humans with normal health and Type 2 diabetes. Clin Sci (Lond). 2015;128:707-713.10.1042/CS2014068125583442 Search in Google Scholar

62. Carrasco-Benso MP, Rivero-Gutierrez B, Lopez-Minguez J, et al. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. FASEB J. 2016;30:3117-3123.10.1096/fj.201600269RR500151327256623 Search in Google Scholar

63. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45:1044-1050.10.2337/diab.45.8.10448690150 Search in Google Scholar

64. Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006;49:1619-1628.10.1007/s00125-006-0273-9 Search in Google Scholar

65. Boden G, Ruiz J, Urbain JL, et al. Evidence for a circadian rhythm of insulin secretion. Am J Physiol. 1996;271:E246-252.10.1152/ajpendo.1996.271.2.E2468770017 Search in Google Scholar

66. Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11-27.10.1016/j.metabol.2017.11.017599563229195759 Search in Google Scholar

67. Saad A, Dalla Man C, Nandy DK, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61:2691-2700.10.2337/db11-1478347854822751690 Search in Google Scholar

68. Lee A, Ader M, Bray GA, et al. Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes. 1992;41:750-759.10.2337/diab.41.6.7501587401 Search in Google Scholar

69. Dallmann R, Viola AU, Tarokh L, et al. The human circadian metabolome. Proc Natl Acad Sci U S A. 2012;109:2625-2629.10.1073/pnas.1114410109328930222308371 Search in Google Scholar

70. Sennels HP, Jorgensen HL, Fahrenkrug J. Diurnal changes of biochemical metabolic markers in healthy young males – the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest. 2015;75:686-692.10.3109/00365513.2015.108038526378655 Search in Google Scholar

71. van Kerkhof LW, Van Dycke KC, Jansen EH, et al. Diurnal Variation of Hormonal and Lipid Biomarkers in a Molecular Epidemiology-Like Setting. PLoS One. 2015;10:e0135652.10.1371/journal.pone.0135652454043326285127 Search in Google Scholar

72. Rivera-Coll A, Fuentes-Arderiu X, Diez-Noguera A. Circadian rhythmic variations in serum concentrations of clinically important lipids. Clin Chem. 1994;40:1549-1553.10.1093/clinchem/40.8.1549 Search in Google Scholar

73. Halkes CJ, Castro Cabezas M, van Wijk JP, et al. Gender differences in diurnal triglyceridemia in lean and overweight subjects. Int J Obes Relat Metab Disord. 2001;25: 1767-1774.10.1038/sj.ijo.080183111781756 Search in Google Scholar

74. Demacker PN, Schade RW, Jansen RT, et al. Intraindividual variation of serum cholesterol, triglycerides and high density lipoprotein cholesterol in normal humans. Atherosclerosis. 1982;45:259-266.10.1016/0021-9150(82)90227-17159498 Search in Google Scholar

75. Cella LK, Van Cauter E, Schoeller DA. Diurnal rhythmicity of human cholesterol synthesis: normal pattern and adaptation to simulated “jet lag”. Am J Phys. 1995;269:E489-498.10.1152/ajpendo.1995.269.3.E4897573426 Search in Google Scholar

76. Chua EC, Shui G, Lee IT, et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci U S A. 2013;110:14468-14473.10.1073/pnas.1222647110376163323946426 Search in Google Scholar

77. “Misalignment.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/misalignment (8 June 2022) Search in Google Scholar

78. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43:1-23.10.1016/j.ecl.2013.09.00924582089 Search in Google Scholar

79. Zimmet P, Alberti KGMM, Stern N, et al. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med. 2019;286:181-191.10.1111/joim.12924 Search in Google Scholar

80. Shetty A, Hsu JW, Manka PP, et al. Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Dig Dis Sci. 2018;63:3187-3206.10.1007/s10620-018-5242-x30121811 Search in Google Scholar

81. Mortaş H, Bilici S, Karakan T. The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiol Int. 2020;37:1067-1081.10.1080/07420528.2020.177871732602753 Search in Google Scholar

82. Scheer FAJL, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. PNAS. 2009;106:4453-4458.10.1073/pnas.0808180106265742119255424 Search in Google Scholar

83. Kirsh V, Cotterchio M, McGlynn N. The association between shift work and obesity in Canada: A cross-sectional study using a novel exposure assessment tool. Occup Environ Med. 2014;71:A88.10.1136/oemed-2014-102362.274 Search in Google Scholar

84. Lieu SJ, Curhan GC, Schernhammer ES, Forman JP. Rotating night shift work and disparate hypertension risk in African-Americans. J Hypertens. 2012;30:61-66.10.1097/HJH.0b013e32834e1ea322134389 Search in Google Scholar

85. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Occup Environ Med. 2001;58:747-752.10.1136/oem.58.11.747 Search in Google Scholar

86. Sohail S, Yu L, Bennett DA, et al. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol Int. 2015;32:802-813.10.3109/07420528.2015.1041597454200426061588 Search in Google Scholar

87. Vgontzas AN, Bixier EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Medicine Reviews. 2005;9:211-224.10.1016/j.smrv.2005.01.00615893251 Search in Google Scholar

88. Gramaglia C, Gambaro E, Bartolomei G, et al. Increased Risk of Metabolic Syndrome in Antidepressants Users: A Mini Review. Front Psychiatry. 2018;9:621.10.3389/fpsyt.2018.00621627988030546325 Search in Google Scholar

89. McIntyre RS, Soczynska JK, Konarski JZ, et al. Should Depressive Syndromes Be Reclassified as “Metabolic Syndrome Type II”? Ann Clin Psychiatry. 2007;19:257-164.10.1080/10401230701653377 Search in Google Scholar

90. Yaffe K. Metabolic syndrome and cognitive disorders: is the sum greater than its parts? Alzheimer Disease & Associated Disorders. 2007;21:167-171.10.1097/WAD.0b013e318065bfd6 Search in Google Scholar

91. Reinke H, Asher G. Circadian clock control of liver metabolic functions. Gastroenterology. 2016;150:574-580.10.1053/j.gastro.2015.11.04326657326 Search in Google Scholar

92. Barres R, Zierath JR. DNA methylation in metabolic disorders. Am J Clin Nutr. 2011;897S–900S.10.3945/ajcn.110.00193321289222 Search in Google Scholar

93. Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience. 2014;264:76-87.10.1016/j.neuroscience.2014.01.043650179024486964 Search in Google Scholar

94. Cedernaes J, Schönke M, Westholm JO, et al. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv. 2018;4:eaar8590.10.1126/sciadv.aar8590610522930140739 Search in Google Scholar

95. El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409-2417.10.1084/jem.20081188255680018809715 Search in Google Scholar

96. Okabe J, Orlowski C, Balcerczyk A, et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res. 2012;110:1067-1076.10.1161/CIRCRESAHA.112.26617122403242 Search in Google Scholar

97. Crnko S, Du Pré BC, Sluijter JPG, et al. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nature Reviews Cardiology. 2019;16:437-447.10.1038/s41569-019-0167-430796369 Search in Google Scholar

98. Durgan DJ, Young ME. The Cardiomyocyte Circadian Clock Emerging Roles in Health and Disease. Circ Res. 2010;106:647-658.10.1161/CIRCRESAHA.109.209957322312120203314 Search in Google Scholar

99. Smolensky MH, Hermida RC, Castriotta RJ, et al. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Medicine. 2007;8:668-680.10.1016/j.sleep.2006.11.01117383936 Search in Google Scholar

100. Fabbian F, Smolensky MH, Tiseo R, et al. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int. 2013;30:17-30.10.3109/07420528.2012.71587223002916 Search in Google Scholar

101. Rakshit K, Qian J, Colwell CS, et al. The islet circadian clock: entrainment mechanisms, function and role in glucose homeostasis. Diabetes Obes Metab. 2015;17:115-122.10.1111/dom.12523456206626332976 Search in Google Scholar

102. Stenvers DJ, Scheer FAJL, Schrauwen P, et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15:75-89.10.1038/s41574-018-0122-130531917 Search in Google Scholar

103. Stenvers DJ, Jongejan A, Atiqi S, et al. Diurnal rhythms in the white adipose tissue transcriptome are disturbed in obese individuals with type 2 diabetes compared with lean control individuals. Diabetologia. 2019;62:704-716.10.1007/s00125-019-4813-530737520 Search in Google Scholar

104. Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med. 2018;18:245-250.10.7861/clinmedicine.18-3-245633408029858436 Search in Google Scholar

105. Roenneberg T, Merrow M. The Circadian Clock and Human Health. Curr Biol. 2016;26:R432-R443.10.1016/j.cub.2016.04.01127218855 Search in Google Scholar

106. Ayas NT, White DP, Al-Delaimy WK, et al. A Prospective Study of Self-Reported Sleep Duration and Incident Diabetes in Women. Diabetes Care. 2003;26:380-384.10.2337/diacare.26.2.38012547866 Search in Google Scholar

107. Suwazono Y, Dochi M, Sakata K, et al. A Longitudinal Study on the Effect of Shift Work on Weight Gain in Male Japanese Workers. Obesity. 2008;16:1887-1893.10.1038/oby.2008.29818535539 Search in Google Scholar

108. Taheri S, Lin L, Austin D, et al. Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index. PLoS Med. 2004;1:e62.10.1371/journal.pmed.001006253570115602591 Search in Google Scholar

109. Egede LE, Zheng D, Simpson K. Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. Diabetes Care. 2002;25:464-470.10.2337/diacare.25.3.46411874931 Search in Google Scholar

110. Bădescu SV, Tătaru C, Kobylinska L, et al. The association between Diabetes mellitus and Depression. J Med Life. 2016;9:120-125. Search in Google Scholar

111. Brouwer A, van Raalte DH, Diamant M, et al. Light therapy for better mood and insulin sensitivity in patients with major depression and type 2 diabetes: a randomised, double-blind, parallel-arm trial. BMC Psychiatry. 2015;15:169.10.1186/s12888-015-0543-5451338226204994 Search in Google Scholar

112. Knutson KL, von Schantz M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 2018;35:1-9.10.1080/07420528.2018.1454458 Search in Google Scholar

113. Reutrakul S, Hood MM, Crowley SJ, et al. Chronotype Is Independently Associated With Glycemic Control in Type 2 Diabetes. Diabetes Care. 2013;36:2523-2529.10.2337/dc12-2697374787223637357 Search in Google Scholar

114. Xu Y, Padiath Q S, Shapiro R E, et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640-644.10.1038/nature0345315800623 Search in Google Scholar

115. Ebisawa T, Uchiyama M, Kajimura N, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2:342-346.10.1093/embo-reports/kve070108386711306557 Search in Google Scholar

116. Crowley SK, Youngstedt SD. Pathophysiology, Associations, and Consequences of Circadian Rhythm Sleep Disorder. In: Kushida C, ed. Encyclopedia of Sleep, 1st ed. Amsterdam: Elsevier, 2013; p. 16-21.10.1016/B978-0-12-378610-4.00266-7 Search in Google Scholar

117. Merikanto I, Lahti T, Puolijoki H, et al. Associations of Chronotype and Sleep With Cardiovascular Diseases and Type 2 Diabetes. Chronobiol Int. 2013;30:470-477.10.3109/07420528.2012.74117123281716 Search in Google Scholar

eISSN:
2501-8132
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, andere, Allgemeinmedizin, Innere Medizin, Chirurgie, Intensivmedizin und Notfallmedizin