Uneingeschränkter Zugang

Amorphous silicon PEC-PV hybrid structure for photo-electrochemical water splitting


Zitieren

[1] M. Zeman and Z. Dong, “Heterojunction silicon based solar cells, Physics and technology of amorphous-crystalline heterostructure silicon solar cells”, Springer Berlin Heidelberg, pp. 13–43, 2012.10.1007/978-3-642-22275-7_2Search in Google Scholar

[2] S. De Wolf, A. Descoeudres, ZC. Holman and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review”, Green, vol. 2, no. 1, pp. 7–24, 2012.10.1515/green-2011-0018Search in Google Scholar

[3] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell”, IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433–1435, 2014.10.1109/JPHOTOV.2014.2352151Search in Google Scholar

[4] M. Grätzel, “Photoelectrochemical cells”, Nature, vol. 414, no. 6861, pp. 338–344, 2001.10.1038/35104607Search in Google Scholar

[5] N. S. Lewis, “Research opportunities to advance solar energy utilization”, Science, vol. 351, no. 6271, pp. 1920, 2016.10.1126/science.aad1920Search in Google Scholar

[6] J. Bao, “Photoelectrochemical water splitting: A new use for bandgap engineering”, Nature nanotechnology, vol. 10, no. 1, pp. 19–20, 2015.10.1038/nnano.2014.322Search in Google Scholar

[7] L. M. Peter, “Photoelectrochemical Water Splitting. A Status Assessment”, Electroanalysis, vol. 27, no. 4, pp. 864–871, 2015.10.1002/elan.201400587Search in Google Scholar

[8] J. Hu, F. Zhu, A. Kumath, D. Prasher and N. Gaillard, “Development of monolithically integrated high performance hybrid PV/a-SiC devices for photoelectrochemical water splitting”, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 3119–3122, 2014.10.1109/PVSC.2014.6925598Search in Google Scholar

[9] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting”, Nano Letters, vol. 11, no. 7, pp. 3026–3033, 2011.10.1021/nl201766hSearch in Google Scholar

[10] E. L. Miller, R. E. Rocheleau and X. M. Deng, “Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production”, International Journal of Hydrogen Energy, vol. 28, no. 5, pp. 615–623, 2003.10.1016/S0360-3199(02)00144-1Search in Google Scholar

[11] Z. Chen, H. N. Dinh, E. Miller, “Photoelectrochemical Water Splitting”, New York: Springer, 2013.10.1007/978-1-4614-8298-7Search in Google Scholar

[12] L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, vol. 35, no. 11, pp. 5233–5244, 2010.10.1016/j.ijhydene.2010.02.133Search in Google Scholar

[13] R. Vasudevan, Z. Thanawala, L. Han, T. Buijs, H. Tan, D. Deligiannis, P. Perez-Rodriguez, I. A. Digdaya, W. A. Smith, M. Zeman and A. H. M. Smets, “A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications”, Solar Energy Materials and Solar Cells, vol. 150, pp. 82–87, 2016.10.1016/j.solmat.2016.02.006Search in Google Scholar

[14] I. A. Digdaya, L. Han, T. W. F. Buijs, M. Zeman, B. Dam, A. H. M. Smets, and W. A. Smith, “Extracting large photovolt-ages from a-SiC photocathodes with an amorphous TiO2 front surface field layer for solar hydrogen evolution”, Energy & Environmental Science, vol. 8, no. 5, pp. 1585–1593, 2015.10.1039/C5EE00769KSearch in Google Scholar

[15] M. Perný, V.Šály, M. Váry, M. Mikolášek, and J. Huran, “Electrical characterization of a-SiC/c-Si solar cell structures”, 38th International Spring Seminar on Electronics Technology (ISSE), IEEE, pp. 16–20, 2015.10.1109/ISSE.2015.7247953Search in Google Scholar

[16] M. Zeman, J. Van den Heuvel, M. Kroon, J. Willemen, B. Pieters and J. Krč, “Amorphous Semiconductor Analysis (ASA), Users manual, version 5.0”, Delft University of Technology, Delft, The Netherlands, 2005.Search in Google Scholar

[17] M. Mikolášek, J. Racko, L. Harmatha, P. Gašpierik and P. Šutta, “Influence of the broken symmetry of defect state distribution at the a-Si: H/c-Si interface on the performance of hetero-junction solar cells”, Applied Surface Science, vol. 256, no. 18, pp. 5662–5666, 2010.10.1016/j.apsusc.2010.03.023Search in Google Scholar

[18] M. Mikolášek, J. Racko and L. Harmatha, “Analysis of low temperature output parameters for investigation of silicon heterojunction solar cells”, Applied Surface Science, vol. 395, pp. 166–171, 2017.10.1016/j.apsusc.2016.04.023Search in Google Scholar

[19] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%”, Nature Energy, vol. 2, pp. 17032, 2017.10.1038/nenergy.2017.32Search in Google Scholar

[20] F. Urbain, V. Smirnov, J.-P. Becker, U. Rau, J. Ziegler, B. Kaiser, W. Jaegermann, and F. Finger, “Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting”, Solar Energy Materials and Solar Cells, vol. 140, pp. 275–280, 2015.10.1016/j.solmat.2015.04.013Search in Google Scholar

[21] I. Matulionis, J. Hu, F. Zhu, J. Gallon, N. Gaillard, T. Deutsch, E. Miller, and A. Madan, “Surface modification of a-SiC photoelectrodes for photocurrent enhancement”, In Solar Hydrogen and Nanotechnology V, International Society for Optics and Photonics, vol. 7770, pp. 77700Z, 2010.10.1117/12.860669Search in Google Scholar

eISSN:
1339-309X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere