This work is licensed under the Creative Commons Attribution 4.0 International License.
Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD '05) (pp. 36-43). Association for Computing Machinery. https://doi.org/10.1145/1134271.1134277AdamicL. A.GlanceN. (2005). The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD '05) (pp. 36-43). Association for Computing Machinery. https://doi.org/10.1145/1134271.1134277Search in Google Scholar
Arias, S. B. (2022). Who securitizes? Climate change discourse in the United Nations. International Studies Quarterly, 66(2). https://doi.org/10.1093/isq/sqac020AriasS. B. (2022). Who securitizes? Climate change discourse in the United Nations. International Studies Quarterly, 66(2). https://doi.org/10.1093/isq/sqac020Search in Google Scholar
Baclawski, K., Bennett, M., Berg-Cross, G., Casanave, C., Fritzsche, D., Luciano, J., Schneider, T., Sharma, R., Singer, J., Sowa, J., Sriram, R. D., Westerinen, A., & Whitten, D. (2018). Ontology summit 2018 communiqué: Contexts in context. Applied Ontology, 13(3), 181-200. https://doi.org/10.3233/AO-180200BaclawskiK.BennettM.Berg-CrossG.CasanaveC.FritzscheD.LucianoJ.SchneiderT.SharmaR.SingerJ.SowaJ.SriramR. D.WesterinenA.WhittenD. (2018). Ontology summit 2018 communiqué: Contexts in context. Applied Ontology, 13(3), 181-200. https://doi.org/10.3233/AO-180200Search in Google Scholar
Bailey, M. A., Strezhnev, A., & Voeten, E. (2017). Estimating dynamic state preferences from United Nations voting data. Journal of Conflict Resolution, 61(2), 430-456. https://doi.org/10.1177/0022002715595700BaileyM. A.StrezhnevA.VoetenE. (2017). Estimating dynamic state preferences from United Nations voting data. Journal of Conflict Resolution, 61(2), 430-456. https://doi.org/10.1177/0022002715595700Search in Google Scholar
Barbieri, K., Keshk, O. M. G., & Pollins, B. M. (2009). Trading data: Evaluating our assumptions and coding rules. Conflict Management and Peace Science., 26(5), 471-491. https://doi.org/10.1177/0738894209343887BarbieriK.KeshkO. M. G.PollinsB. M. (2009). Trading data: Evaluating our assumptions and coding rules. Conflict Management and Peace Science., 26(5), 471-491. https://doi.org/10.1177/0738894209343887Search in Google Scholar
Baturo, A., Dasandi, N., & Mikhaylov, S. J. (2017). Understanding state preferences with text as data: Introducing the UN general debate corpus. Research and Politics, 4(2). https://doi.org/10.1177/2053168017712821BaturoA.DasandiN.MikhaylovS. J. (2017). Understanding state preferences with text as data: Introducing the UN general debate corpus. Research and Politics, 4(2). https://doi.org/10.1177/2053168017712821Search in Google Scholar
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3, 993-1022.BleiD. M.NgA. Y.JordanM. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3, 993-1022.Search in Google Scholar
Chelotti, N., Dasandi, N., & Jankin Mikhaylov, S. (2022). Do intergovernmental organizations have a socialization effect on member state preferences? Evidence from the UN General Debate. International Studies Quarterly, 66(1). https://doi.org/10.1093/isq/sqab069ChelottiN.DasandiN.Jankin MikhaylovS. (2022). Do intergovernmental organizations have a socialization effect on member state preferences? Evidence from the UN General Debate. International Studies Quarterly, 66(1). https://doi.org/10.1093/isq/sqab069Search in Google Scholar
Claude, I. L. (1966). Collective legitimization as a political function of the United Nations. International Organization, 20(3), 367-379. https://doi.org/10.1017/S0020818300012832ClaudeI. L. (1966). Collective legitimization as a political function of the United Nations. International Organization, 20(3), 367-379. https://doi.org/10.1017/S0020818300012832Search in Google Scholar
Dasandi, N., Jankin, S., & Baturo, A. (2023). Words to unite nations: The complete UN General Debate Corpus, 1946-present [Project]. OSF. https://osf.io/z69fjDasandiN.JankinS.BaturoA. (2023). Words to unite nations: The complete UN General Debate Corpus, 1946-present [Project]. OSF. https://osf.io/z69fjSearch in Google Scholar
Dieng, A. B., Ruiz, F. J. R., & Blei, D. M. (2019). The dynamic embedded topic model. arXiv. https://doi. org/10.48550/arXiv.1907.05545DiengA. B.RuizF. J. R.BleiD. M. (2019). The dynamic embedded topic model. arXiv. https://doi.org/10.48550/arXiv.1907.05545Search in Google Scholar
Doan, T. M., & Gulla, J. A. (2022). A Survey on Political Viewpoints Identification. Online Social Networks and Media, 30, 100208. https://doi.org/10.1016/j.osnem.2022.100208DoanT. M.GullaJ. A. (2022). A Survey on Political Viewpoints Identification. Online Social Networks and Media, 30, 100208. https://doi.org/10.1016/j.osnem.2022.100208Search in Google Scholar
Dong, X., & Lian, Y. (2021). A review of social media-based public opinion analyses: Challenges and recommendations. Technology in Society, 67, 101724. https://doi.org/10.1016/j.techsoc.2021.101724DongX.LianY. (2021). A review of social media-based public opinion analyses: Challenges and recommendations. Technology in Society, 67, 101724. https://doi.org/10.1016/j.techsoc.2021.101724Search in Google Scholar
Gangula, R. R. R., Duggenpudi, S. R., & Mamidi, R. (2019). Detecting political bias in news articles using headline attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 77-84). https://doi.org/10.18653/v1/w19-4809GangulaR. R. R.DuggenpudiS. R.MamidiR. (2019). Detecting political bias in news articles using headline attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 77-84). https://doi.org/10.18653/v1/w19-4809Search in Google Scholar
Garimella, K., De Francisci Morales, G., Gionis, A., & Mathioudakis, M. (2016). Quantifying controversy in social media. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (pp. 33-42). https://doi.org/10.1145/2835776.2835792GarimellaK.De Francisci MoralesG.GionisA.MathioudakisM. (2016). Quantifying controversy in social media. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining (pp. 33-42). https://doi.org/10.1145/2835776.2835792Search in Google Scholar
Gentzkiow, M., & Shapiro, J. M. (2010). What drives media slant? Evidence from U.S. Daily Newspapers. Econometrica, 78(1), 35-71. https://doi.org/10.3982/ecta7195GentzkiowM.ShapiroJ. M. (2010). What drives media slant? Evidence from U.S. Daily Newspapers. Econometrica, 78(1), 35-71. https://doi.org/10.3982/ecta7195Search in Google Scholar
Gibler, D. M. (2008). International military alliances, 1648-2008. CQ Press.GiblerD. M. (2008). International military alliances, 1648-2008. CQ Press.Search in Google Scholar
Gu, Y., Chen, T., Sun, Y., & Wang, B. (2017). Ideology detection for Twitter users via link analysis. In D. Lee, Y. R. Lin, N. Osgood, & R. Thomson (Eds.), Social, cultural, and behavioral modeling: SBP-BRiMS 2017 (Lecture Notes in Computer Science, Vol. 10354, pp. 262-268). Springer. https://doi.org/10.1007/978-3-319-60240-0_32GuY.ChenT.SunY.WangB. (2017). Ideology detection for Twitter users via link analysis. In LeeD.LinY. R.OsgoodN.ThomsonR. (Eds.), Social, cultural, and behavioral modeling: SBP-BRiMS 2017 (Lecture Notes in Computer Science, Vol. 10354, pp. 262-268). Springer. https://doi.org/10.1007/978-3-319-60240-0_32Search in Google Scholar
Gurciullo, S., & Mikhaylov, S. J. (2017a). Topology analysis of international networks based on debates in the United Nations. arXiv. https://doi.org/10.48550/arXiv.1707.09491GurciulloS.MikhaylovS. J. (2017a). Topology analysis of international networks based on debates in the United Nations. arXiv. https://doi.org/10.48550/arXiv.1707.09491Search in Google Scholar
Gurciullo, S., & Mikhaylov, S. J. (2017b). Detecting policy preferences and dynamics in the UN general debate with neural word embeddings. In 2017 International Conference on the Frontiers and Advances in Data Science (FADS) (pp. 74-79). IEEE. https://doi.org/10.1109/FADS.2017.8253197GurciulloS.MikhaylovS. J. (2017b). Detecting policy preferences and dynamics in the UN general debate with neural word embeddings. In 2017 International Conference on the Frontiers and Advances in Data Science (FADS) (pp. 74-79). IEEE. https://doi.org/10.1109/FADS.2017.8253197Search in Google Scholar
Hecht, C. (2016). The shifting salience of democratic governance: Evidence from the United Nations General Assembly General Debates. Review of International Studies, 42(5), 915-938. https://doi.org/10.1017/S0260210516000073HechtC. (2016). The shifting salience of democratic governance: Evidence from the United Nations General Assembly General Debates. Review of International Studies, 42(5), 915-938. https://doi.org/10.1017/S0260210516000073Search in Google Scholar
Høyland, B., Godbout, J. F., Lapponi, E., & Velldal, E. (2014). Predicting Party Affiliations from European Parliament Debates. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp.56–60). https://doi.org/10.3115/v1/w14-2516HøylandB.GodboutJ. F.LapponiE.VelldalE. (2014). Predicting Party Affiliations from European Parliament Debates. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp.56–60). https://doi.org/10.3115/v1/w14-2516Search in Google Scholar
Iyyer, M., Enns, P., Boyd-Graber, J., & Resnik, P. (2014). Political ideology detection using recursive neural networks. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (volume 1, pp. 1113-1122). https://doi.org/10.3115/v1/p14-1105IyyerM.EnnsP.Boyd-GraberJ.ResnikP. (2014). Political ideology detection using recursive neural networks. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (volume 1, pp. 1113-1122). https://doi.org/10.3115/v1/p14-1105Search in Google Scholar
Kentikelenis, A., & Voeten, E. (2021). Legitimacy challenges to the liberal world order: Evidence from United Nations speeches, 1970–2018. Review of International Organizations, 16(4), 721-754. https://doi.org/10.1007/S11558-020-09404-YKentikelenisA.VoetenE. (2021). Legitimacy challenges to the liberal world order: Evidence from United Nations speeches, 1970–2018. Review of International Organizations, 16(4), 721-754. https://doi.org/10.1007/S11558-020-09404-YSearch in Google Scholar
Kitchens, B., Johnson, S. L., & Gray, P. (2020). Understanding echo chambers and filter bubbles: The impact of social media on diversification and partisan shifts in news consumption. MIS Quarterly, 44(4). https://doi. org/10.25300/MISQ/2020/16371KitchensB.JohnsonS. L.GrayP. (2020). Understanding echo chambers and filter bubbles: The impact of social media on diversification and partisan shifts in news consumption. MIS Quarterly, 44(4). https://doi.org/10.25300/MISQ/2020/16371Search in Google Scholar
Kozareva, Z., & Hovy, E. (2010). Learning arguments and supertypes of semantic relations using recursive patterns. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, (pp.1482-1491).KozarevaZ.HovyE. (2010). Learning arguments and supertypes of semantic relations using recursive patterns. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, (pp.1482-1491).Search in Google Scholar
Lauderdale, B. E., & Clark, T. S. (2012). The Supreme Court’s many median justices. American Political Science Review, 106(4), 847-866. https://doi.org/10.1017/S0003055412000469LauderdaleB. E.ClarkT. S. (2012). The Supreme Court’s many median justices. American Political Science Review, 106(4), 847-866. https://doi.org/10.1017/S0003055412000469Search in Google Scholar
Lin, W. H., Wilson, T., Wiebe, J., & Hauptmann, A. (2006). Which side are you on? Identifying perspectives at the document and sentence levels. In CoNLL 2006 - Proceedings of the 10th Conference on Computational Natural Language Learning (pp.109-116).LinW. H.WilsonT.WiebeJ.HauptmannA. (2006). Which side are you on? Identifying perspectives at the document and sentence levels. In CoNLL 2006-Proceedings of the 10th Conference on Computational Natural Language Learning (pp.109-116).Search in Google Scholar
Lotan, N., & Minkov, E. (2023). Social world knowledge: Modeling and applications. PLoS ONE, 18(7), e0283700. https://doi.org/10.1371/journal.pone.0283700LotanN.MinkovE. (2023). Social world knowledge: Modeling and applications. PLoS ONE, 18(7), e0283700. https://doi.org/10.1371/journal.pone.0283700Search in Google Scholar
Mitrani, M. (2017). The Discursive construction of the international community: Evidence from the United Nations General Assembly. KFG Working Paper Series, 78, 1-30. http://nbn-resolving.de/urn:nbn:de:0168-ssoar-51596-1MitraniM. (2017). The Discursive construction of the international community: Evidence from the United Nations General Assembly. KFG Working Paper Series, 78, 1-30. http://nbn-resolving.de/urn:nbn:de:0168-ssoar-51596-1Search in Google Scholar
Mitrani, M. (2023). In search of the bellwether: A text as data approach for assessing trend-making in international discourse [conference paper]. EISA Annual Conference, Potsdam, Germany.MitraniM. (2023). In search of the bellwether: A text as data approach for assessing trend-making in international discourse [conference paper]. EISA Annual Conference, Potsdam, Germany.Search in Google Scholar
Paul, M. J., Zhai, C. X., & Girju, R. (2010). Summarizing contrastive viewpoints in opinionated text. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 66-76).PaulM. J.ZhaiC. X.GirjuR. (2010). Summarizing contrastive viewpoints in opinionated text. In Proceedings of the 2010 conference on empirical methods in natural language processing (pp. 66-76).Search in Google Scholar
Prati, R. C., & Said-Hung, E. (2019). Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning. AI and Society, 34(3), 589-598. https://doi.org/10.1007/s00146-017-0761-0PratiR. C.Said-HungE. (2019). Predicting the ideological orientation during the Spanish 24M elections in Twitter using machine learning. AI and Society, 34(3), 589-598. https://doi.org/10.1007/s00146-017-0761-0Search in Google Scholar
Preotiuc-Pietro, D., Hopkins, D. J., Liu, Y., & Ungar, L. (2017). Beyond binary labels: Political ideology prediction of Twitter users. In ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers, 1, pp.729-740). https://doi.org/10.18653/v1/P17-1068Preotiuc-PietroD.HopkinsD. J.LiuY.UngarL. (2017). Beyond binary labels: Political ideology prediction of Twitter users. In ACL 2017-55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers, 1, pp.729-740). https://doi.org/10.18653/v1/P17-1068Search in Google Scholar
Quraishi, M., Fafalios, P., & Herder, E. (2018). Viewpoint discovery and understanding in social networks. In WebSci 2018 - Proceedings of the 10th ACM Conference on Web Science (pp.47-56). https://doi.org/10.1145/3201064.3201076QuraishiM.FafaliosP.HerderE. (2018). Viewpoint discovery and understanding in social networks. In WebSci 2018-Proceedings of the 10th ACM Conference on Web Science (pp.47-56). https://doi.org/10.1145/3201064.3201076Search in Google Scholar
Rao, A., & Spasojevic, N. (2016). Actionable and political text classification using word embeddings and LSTM. arXiv. http://arxiv.org/abs/1607.02501RaoA.SpasojevicN. (2016). Actionable and political text classification using word embeddings and LSTM. arXiv. http://arxiv.org/abs/1607.02501Search in Google Scholar
Ren, Z., Inel, O., Aroyo, L., & De Rijke, M. (2016). Time-aware multi-viewpoint summarization of multilingual social text streams. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 387-396). https://doi.org/10.1145/2983323.2983710RenZ.InelO.AroyoL.De RijkeM. (2016). Time-aware multi-viewpoint summarization of multilingual social text streams. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 387-396). https://doi.org/10.1145/2983323.2983710Search in Google Scholar
Rheault, L., & Cochrane, C. (2020). Word embeddings for the analysis of ideological placement in parliamentary corpora. Political Analysis, 28(1), 112-133. https://doi.org/10.1017/pan.2019.26RheaultL.CochraneC. (2020). Word embeddings for the analysis of ideological placement in parliamentary corpora. Political Analysis, 28(1), 112-133. https://doi.org/10.1017/pan.2019.26Search in Google Scholar
Sataloff, R. T., Johns, M. M., Kost, K. M., Schoenfeld, M., Eckhard, S., Patz, R., & van Meegdenburg, H. (2018). Discursive landscapes and unsupervised topic modeling in IR: A validation of text-as-data approaches through a new corpus of UN Security Council speeches on Afghanistan. arXiv. https://doi.org/10.48550/arXiv.1810.05572SataloffR. T.JohnsM. M.KostK. M.SchoenfeldM.EckhardS.PatzR.van MeegdenburgH. (2018). Discursive landscapes and unsupervised topic modeling in IR: A validation of text-as-data approaches through a new corpus of UN Security Council speeches on Afghanistan. arXiv. https://doi.org/10.48550/arXiv.1810.05572Search in Google Scholar
Shukla, D., & Unger, S. (2022). Sentiment analysis of international relations with Artificial Intelligence. Athens Journal of Sciences, 9(2), 91-106. https://doi.org/10.30958/ajs.9-2-1ShuklaD.UngerS. (2022). Sentiment analysis of international relations with Artificial Intelligence. Athens Journal of Sciences, 9(2), 91-106. https://doi.org/10.30958/ajs.9-2-1Search in Google Scholar
Sim, Y., Acree, B. D. L., Gross, J. H., & Smith, N. A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 91-101).SimY.AcreeB. D. L.GrossJ. H.SmithN. A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 91-101).Search in Google Scholar
Simmons, B. A., & Shaffer, R. (2019). Globalization and border securitization in international discourse. SSRN Electronic Journal, 3480613. https://doi.org/10.2139/ssrn.3480613SimmonsB. A.ShafferR. (2019). Globalization and border securitization in international discourse. SSRN Electronic Journal, 3480613. https://doi.org/10.2139/ssrn.3480613Search in Google Scholar
Singer, D., Bremer, S., & Stuckey, J. (1972). Capability Distribution, Uncertainty, and Major Power War, 18201965. In B. M. Russett (Ed.), Peace, War, and Numbers (pp.19-48). SAGE Publications Ltd.SingerD.BremerS.StuckeyJ. (1972). Capability Distribution, Uncertainty, and Major Power War, 18201965. In RussettB. M. (Ed.), Peace, War, and Numbers (pp.19-48). SAGE Publications Ltd.Search in Google Scholar
Thonet, T., Cabanac, G., Boughanem, M., & Pinel-Sauvagnat, K. (2016). VODUM: A topic model unifying viewpoint, topic and opinion discovery. In Proceedings of Advances in Information Retrieval: 38th European Conference on IR Research (pp. 533-545). Springer. https://doi.org/10.1007/978-3-319-30671-1_39ThonetT.CabanacG.BoughanemM.Pinel-SauvagnatK. (2016). VODUM: A topic model unifying viewpoint, topic and opinion discovery. In Proceedings of Advances in Information Retrieval: 38th European Conference on IR Research (pp. 533-545). Springer. https://doi.org/10.1007/978-3-319-30671-1_39Search in Google Scholar
Trabelsi, A., & Zaïane, O. R. (2019). Phaitv: A phrase author interaction topic viewpoint model for the summarization of reasons expressed by polarized stances. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 13, pp. 482-492). https://ojs.aaai.org/index.php/ICWSM/article/view/3246TrabelsiA.ZaïaneO. R. (2019). Phaitv: A phrase author interaction topic viewpoint model for the summarization of reasons expressed by polarized stances. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 13, pp. 482-492). https://ojs.aaai.org/index.php/ICWSM/article/view/3246Search in Google Scholar
Vilares, D., & He, Y. (2017). Detecting perspectives in political debates. In EMNLP 2017-Conference on Empirical Methods in Natural Language Processing (pp. 1573-1582). Association for Computational Linguistics. https://doi.org/10.18653/v1/d17-1165VilaresD.HeY. (2017). Detecting perspectives in political debates. In EMNLP 2017-Conference on Empirical Methods in Natural Language Processing (pp. 1573-1582). Association for Computational Linguistics. https://doi.org/10.18653/v1/d17-1165Search in Google Scholar
Vliegenthart, R., Walgrave, S., & Zicha, B. (2013). How preferences, information and institutions interactively drive agenda-setting: Questions in the Belgian parliament, 1993-2000. European Journal of Political Research, 52(3), 390-418. https://doi.org/10.1111/J.1475-6765.2012.02070.XVliegenthartR.WalgraveS.ZichaB. (2013). How preferences, information and institutions interactively drive agenda-setting: Questions in the Belgian parliament, 1993-2000. European Journal of Political Research, 52(3), 390-418. https://doi.org/10.1111/J.1475-6765.2012.02070.XSearch in Google Scholar
Watanabe, K., & Zhou, Y. (2020). Theory-driven analysis of large corpora: Semisupervised topic classification of the UN speeches. Social Science Computer Review, 40(2), 1-21. https://doi.org/10.1177/0894439320907027WatanabeK.ZhouY. (2020). Theory-driven analysis of large corpora: Semisupervised topic classification of the UN speeches. Social Science Computer Review, 40(2), 1-21. https://doi.org/10.1177/0894439320907027Search in Google Scholar
Wong, F. M. F., Tan, C. W., Sen, S., & Chiang, M. (2016). Quantifying political leaning from tweets, retweets, and retweeters. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2158-2172. https://doi.org/10.1109/TKDE.2016.2553667WongF. M. F.TanC. W.SenS.ChiangM. (2016). Quantifying political leaning from tweets, retweets, and retweeters. IEEE Transactions on Knowledge and Data Engineering, 28(8), 2158-2172. https://doi.org/10.1109/TKDE.2016.2553667Search in Google Scholar
Xiao, Z., Song, W., Xu, H., Ren, Z., & Sun, Y. (2020). TIMME: Twitter Ideology-detection via Multi-task Multirelational embedding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Vol.20, pp. 2258-2268). https://doi.org/10.1145/3394486.3403275XiaoZ.SongW.XuH.RenZ.SunY. (2020). TIMME: Twitter Ideology-detection via Multi-task Multi-relational embedding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Vol.20, pp. 2258-2268). https://doi.org/10.1145/3394486.3403275Search in Google Scholar
Zhitomirsky-Geffet, M. (2019). Towards a diversified knowledge organization system: An open network of interlinked subsystems with multiple validity scopes. Journal of Documentation, 75(5), 1124-1138. https://doi.org/10.1108/JD-10-2018-0163Zhitomirsky-GeffetM. (2019). Towards a diversified knowledge organization system: An open network of interlinked subsystems with multiple validity scopes. Journal of Documentation, 75(5), 1124-1138. https://doi.org/10.1108/JD-10-2018-0163Search in Google Scholar
Zhitomirsky-Geffet, M. (2022). Turning filter bubbles into bubblesphere with multi-viewpoint KOS and diverse similarity. In Proceedings of the Association for Information Science and Technology, 59(1), 533-538. https://doi.org/10.1002/pra2.665Zhitomirsky-GeffetM. (2022). Turning filter bubbles into bubblesphere with multi-viewpoint KOS and diverse similarity. In Proceedings of the Association for Information Science and Technology, 59(1), 533-538. https://doi.org/10.1002/pra2.665Search in Google Scholar
Zhitomirsky-Geffet, M., & Avidan, G. (2021). A new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies. Knowledge Organization, 48(5), 331-344. https://doi.org/10.5771/0943-7444-2021-5-331Zhitomirsky-GeffetM.AvidanG. (2021). A new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies. Knowledge Organization, 48(5), 331-344. https://doi.org/10.5771/0943-7444-2021-5-331Search in Google Scholar
Zhitomirsky-Geffet, M., & Hajibayova, L. (2020). A new framework for ethical creation and evaluation of multiperspective knowledge organization systems. Journal of Documentation, 76(6), 1459-1471. https://doi.org/10.1108/JD-04-2020-0053/FULL/XMLZhitomirsky-GeffetM.HajibayovaL. (2020). A new framework for ethical creation and evaluation of multiperspective knowledge organization systems. Journal of Documentation, 76(6), 1459-1471. https://doi.org/10.1108/JD-04-2020-0053/FULL/XMLSearch in Google Scholar
Zhou, D. X., Resnick, P., & Mei, Q. (2011). Classifying the political leaning of news articles and users from user votes. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (vol. 5, No. 1, pp. 417-424). https://doi.org/10.1609/icwsm.v5i1.14108ZhouD. X.ResnickP.MeiQ. (2011). Classifying the political leaning of news articles and users from user votes. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (vol. 5, No. 1, pp. 417-424). https://doi.org/10.1609/icwsm.v5i1.14108Search in Google Scholar
Zhou, Y., & Kurusu, K. (2021). How major powers diverge on global governance? Evidence from the United Nations General Debate. Kobe University Law Review, 54, 63-80. https://doi.org/10.24546/81013152ZhouY.KurusuK. (2021). How major powers diverge on global governance? Evidence from the United Nations General Debate. Kobe University Law Review, 54, 63-80. https://doi.org/10.24546/81013152Search in Google Scholar