Uneingeschränkter Zugang

New Perspectives in the Treatment of Acute and Chronic Heart Failure with Reduced Ejection Fraction


Zitieren

Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129-2200. doi: 10.1093/eurheartj/ehw128.10.1093/eurheartj/ehw128Search in Google Scholar

Choi HM, Park MS, Youn JC. Update on heart failure management and future directions. Korean J Intern Med. 2019;34:11-43. doi: 10.3904/kjim.2018.428.10.3904/kjim.2018.428Search in Google Scholar

Rossignol P, Hernandez AF, Solomon SD, Zannad F. Heart failure drug treatment. Lancet. 2019;393:1034-1044. doi: 10.1016/S0140-6736(18)31808-7.10.1016/S0140-6736(18)31808-7Search in Google Scholar

Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1-20. doi: 10.1016/j.jchf.2012.10.002.10.1016/j.jchf.2012.10.002Search in Google Scholar

Zannad F. Rising incidence of heart failure demands action. Lancet. 2018;391:518-519. doi: 10.1016/S0140-6736(17)32873-8.10.1016/S0140-6736(17)32873-8Search in Google Scholar

Murphy SP, Ibrahim NE, Januzzi JL. Heart failure with reduced ejection fraction: a review. JAMA. 2020;324:488-504. doi: 10.1001/jama.2020.10262.10.1001/jama.2020.1026232749493Search in Google Scholar

Virani SS, Alonso A, Benjamin EJ, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2020 update: a report from the American Heart Association. Circulation. 2020;141:e139-e596. doi: 10.1161/CIR.0000000000000757.10.1161/CIR.000000000000075731992061Search in Google Scholar

Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137-e161. doi: 10.1016/j. cardfail.2017.04.014.Search in Google Scholar

Yancy CW, Januzzi JL Jr, Allen LA, et al. 2021 Update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77:772-810. doi: 10.1016/j. jacc.2020.11.022.Search in Google Scholar

McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995-2008. doi: 10.1056/NEJMoa1911303.10.1056/NEJMoa191130331535829Search in Google Scholar

Armstrong PW, Pieske B, Anstrom KJ, et al. VICTORIA Study Group. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382:1883-1893. doi: 10.1056/NEJMoa1915928.10.1056/NEJMoa191592832222134Search in Google Scholar

Teerlink JR, Diaz R, Felker GM, et al. Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction: rationale and design of GALACTIC-HF. JACC: Heart Fail. 2020;8:329-340. doi: 10.1016/j.jchf.2019.12.001.10.1016/j.jchf.2019.12.00132035892Search in Google Scholar

Halliday BP, Wassall R, Lota AS, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet. 2019; 393:61-73. doi: 10.1016/S0140-6736(18)32484-X.10.1016/S0140-6736(18)32484-XSearch in Google Scholar

Greene SJ, Butler J, Albert NM, et al. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol. 2018;72:351-366. doi: 10.1016/j. jacc.2018.04.070.Search in Google Scholar

Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodelling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106:62-69. doi: 10.5935/abc.20160005.10.5935/abc.20160005Search in Google Scholar

Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodelling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569-582. doi: 10.1016/s0735-1097(99)00630-0.10.1016/S0735-1097(99)00630-0Search in Google Scholar

Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113:709-724. doi: 10.1161/CIRCRESAHA.113.300376.10.1161/CIRCRESAHA.113.300376Search in Google Scholar

Normand C, Kaye DM, Povsic TJ, Dickstein K. Beyond pharmacological treatment: an insight into therapies that target specific aspects of heart failure pathophysiology. Lancet. 2019;393:1045-1055. doi: 10.1016/S0140-6736(18)32216-5.10.1016/S0140-6736(18)32216-5Search in Google Scholar

Tarone G, Balligand JL, Bauersachs J, et al. Targeting myocardial remodelling to develop novel therapies for heart failure: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail. 2014;16:494-508. doi: 10.1002/ejhf.62.10.1002/ejhf.62Search in Google Scholar

Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodelling during pathophysiological stimulation. Circulation. 2010;122:2727-2735. doi: 10.1161/CIRCULATIONAHA.110.942268.10.1161/CIRCULATIONAHA.110.942268Search in Google Scholar

Tomasik A, Nowalany-Kozielska E. Pharmacological treatment of left ventricular remodelling: recent trial results. Clin Invest. 2015;5:767-776. doi: 10.1172/JCI41329.10.1172/JCI41329Search in Google Scholar

Marrow BA, Cook SA, Prasad SK, McCann GP. Emerging techniques for risk stratification in nonischemic dilated cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol. 2020;75:1196-1207. doi: 10.1016/j.jacc.2019.12.058.10.1016/j.jacc.2019.12.058Search in Google Scholar

Lechat P, Brunhuber KW, Hofmann R, et al. The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9-13. doi.org/10.1016/S0140-6736(98)11181-9.10.1016/S0140-6736(98)11181-9Search in Google Scholar

Hjalmarson Å, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). JAMA. 2000;283:1295-1302. doi: 10.1001/jama.283.10.1295.10.1001/jama.283.10.1295Search in Google Scholar

Packer M. US Carvedilol Heart Study Group. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334:1349-1355. doi: 10.1056/NEJM199605233342101.10.1056/NEJM199605233342101Search in Google Scholar

Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651-1658. doi: 10.1056/NEJM200105313442201.10.1056/NEJM200105313442201Search in Google Scholar

Fröhlich H, Torres L, Täger T, et al. Bisoprolol compared with carvedilol and metoprolol succinate in the treatment of patients with chronic heart failure. Clin Research Cardiol. 2017;106:711-721. doi: 10.1007/s00392-017-1115-0.10.1007/s00392-017-1115-0Search in Google Scholar

Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667-1675. doi: 10.1056/NEJMoa01071.Search in Google Scholar

Swedberg K, Kjekshus J, CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). Am J Cardiol. 1988;62: 60A-66A. doi: 10.1016/s0002-9149(88)80087-0.10.1016/S0002-9149(88)80087-0Search in Google Scholar

Yusuf S, Pitt B, Davis CE, Hood WBJr, Cohn JN, SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;27:685-691. doi: 10.1056/NEJM199209033271003.10.1056/NEJM1992090332710031463530Search in Google Scholar

Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation. 1999;100:2312-2318.10.1161/01.CIR.100.23.2312Search in Google Scholar

Young JB, Dunlap ME, Pfeffer MA et al. Mortality and morbidity reduction with Candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation. 2004;110:2618-2626. doi: 10.1161/01. CIR.0000146819.43235.A9.Search in Google Scholar

Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30-38. doi: 10.1038/nrcardio.2016.163.10.1038/nrcardio.2016.163528691227708278Search in Google Scholar

Mărănducă MA, Tărniceru CC, Carasevici E, Cojocaru E. Interaction between angiotensin II, hypertension and inflammation in rat kidney. The Medical-Surgical Journal. 2015;119:791-797. doi: 10.1016/j.phrs.2017.03.017.10.1016/j.phrs.2017.03.01728330785Search in Google Scholar

Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension. 2015;65:257-263. doi: 10.1161/HYPERTENSIONAHA.114.04488.10.1161/HYPERTENSIONAHA.114.0448825368026Search in Google Scholar

Berliner D, Bauersachs J. New drugs: big changes in conservative heart failure therapy? Eur J CardioThorac Surg. 2019;55:i3-i10. doi: 10.1093/ejcts/ezy421.10.1093/ejcts/ezy421652610031106335Search in Google Scholar

Li H, Duan Y, Chen B, et al. New pharmacological treatments for heart failure with reduced ejection fraction (HFrEF): A Bayesian network meta-analysis. Medicine. 2020;99:e18341. doi: 10.1097/MD.0000000000018341.10.1097/MD.0000000000018341700476832000355Search in Google Scholar

Berliner D, Hallbaum M, Bauersachs J. Current drug therapy for heart failure with reduced ejection fraction. Herz. 2018;43:383-391. doi: 10.1007/s00059-018-4712-4.10.1007/s00059-018-4712-429777284Search in Google Scholar

Van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison. J Am Coll Cardiol. 2019;73:2756-2768. doi: 10.1016/j. jacc.2019.03.478.Search in Google Scholar

Reis Filho JRDAR, Cardoso JN, Cardoso CMDR, Pereira-Barretto AC. Reverse cardiac remodelling: a marker of better prognosis in heart failure. Arq Bras Cardiol. 2015;104:502-506. doi: 10.5935/abc.20150025.10.5935/abc.20150025448468326131706Search in Google Scholar

Hussein AA and Wilkoff BL. Cardiac implantable electronic device therapy in heart failure. Circulation Res. 2019;124:1584-1597. doi: 10.1161/CIRCRESAHA.118.313571.10.1161/CIRCRESAHA.118.31357131120815Search in Google Scholar

Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709-717. doi: 10.1056/NEJM199909023411001.10.1056/NEJM19990902341100110471456Search in Google Scholar

Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309-1321. doi: 10.1056/NEJMoa030207.10.1056/NEJMoa03020712668699Search in Google Scholar

Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11-21. doi: 10.1056/NEJMoa1009492.10.1056/NEJMoa100949221073363Search in Google Scholar

Rossignol P, Cleland JG, Bhandari S, et al. Determinants and consequences of renal function variations with aldosterone blocker therapy in heart failure patients after myocardial infarction: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study. Circulation. 2012;125:271-279. doi: 10.1161/CIRCULATIONAHA.111.028282.10.1161/CIRCULATIONAHA.111.02828222128223Search in Google Scholar

Rossignol P, Dobre D, McMurray JJ, et al. Incidence, determinants, and prognostic significance of hyperkalaemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Circ Heart Fail. 2014;7:51-58. doi: 10.1161/CIRCHEARTFAILURE.113.000792.10.1161/CIRCHEARTFAILURE.113.00079224297687Search in Google Scholar

Vardeny O, Claggett B, Anand I, et al. Incidence, predictors, and outcomes related to hypo- and hyperkalaemia in patients with severe heart failure treated with a mineralocorticoid receptor antagonist. Circ Heart Fail. 2014;7:573-579. doi: 10.1161/CIRCHEARTFAILURE.114.001104.10.1161/CIRCHEARTFAILURE.114.001104Search in Google Scholar

Maisel A, Xue Y, van Veldhuisen DJ, et al. Effect of spironolactone on 30-day death and heart failure rehospitalization (from the COACH study). Am J Cardiol. 2014;114:737–742. doi: 10.1016/j. amjcard.2014.05.062.Search in Google Scholar

Taylor AL, Ziesche S, Yancy C, African-American Heart Failure Trial Investigators. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351:2049-2057. doi: 10.1056/NEJMoa042934.10.1056/NEJMoa042934Search in Google Scholar

Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Tavazzi L. Rationale and design of a randomized, double-blind, placebo-controlled outcome trial of ivabradine in chronic heart failure: the Systolic Heart Failure Treatment with the I(f) Inhibitor Ivabradine Trial (SHIFT). Eur J Heart Fail. 2010;12:75-81. doi: 10.1093/eurjhf/hfp154.10.1093/eurjhf/hfp154Search in Google Scholar

Fox K, Ford I, Steg PG, et al. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet. 2008;372:817-821. doi: 10.1016/S0140-6736(08)61171-X.10.1016/S0140-6736(08)61171-XSearch in Google Scholar

Swedberg K, Komajda M, Böhm M, SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875-885. doi: 10.1016/S0140-6736(10)61198-1.10.1016/S0140-6736(10)61198-1Search in Google Scholar

Orasanu G, Al-Kindi SG, Oliveira GH. Ivabradine in management of heart failure: a critical appraisal. Curr Heart Fail Rep. 2016;13:60-69. doi: 10.1007/s11897-016-0276-x.10.1007/s11897-016-0276-x26797824Search in Google Scholar

Sattar Y, Samani EN, Zafrullah FNU, Latchana S, Patel NB. Ivabradine in congestive heart failure: patient selection and perspectives. Cureus. 2019;11:e4448. doi: 10.7759/cureus.4448.10.7759/cureus.4448656152831205834Search in Google Scholar

Tondi L, Fragasso G, Spoladore R, et al. Real-life indications to ivabradine treatment for heart rate optimization in patients with chronic systolic heart failure. J Cardiovasc Med. 2018;19:351-356. doi: 10.2459/JCM.0000000000000661.10.2459/JCM.000000000000066129762337Search in Google Scholar

Thorup L, Simonsen U, Grimm D, Hedegaard ER. Ivabradine: current and future treatment of heart failure. Basic Clin Pharmacol Toxicol. 2017;121:89-97. doi: 10.1111/bcpt.12784.10.1111/bcpt.1278428371247Search in Google Scholar

Agnetti G, Piepoli MF, Siniscalchi G, Nicolini F. New insights in the diagnosis and treatment of heart failure. BioMed Res Intern. 2015;2015:265260. doi: 10.1155/2015/265260.10.1155/2015/265260463745726634204Search in Google Scholar

McMurray JJ, Packer M, Desai AS, et al. Angiotensin– neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993-1004. doi: 10.1056/NEJMoa1409077.10.1056/NEJMoa140907725176015Search in Google Scholar

Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZ. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643-1658. doi: 10.1161/CIRCULATIONAHA.117.030012.10.1161/CIRCULATIONAHA.117.030012584647029061576Search in Google Scholar

Ahmed HM, Khraishah H, Cho L. Cardioprotective anti-hyperglycaemic medications: a review of clinical trials. Eur Heart J. 2018;39:2368-2375. doi: 10.1093/eurheartj/ehx668.10.1093/eurheartj/ehx66829236983Search in Google Scholar

Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2:1025-1029. doi: 10.1001/jamacardio.2017.2275.10.1001/jamacardio.2017.227528768320Search in Google Scholar

Verma S, McMurray JJ. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108-2117. doi: 10.1007/s00125-018-4670-7.10.1007/s00125-018-4670-730132036Search in Google Scholar

Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020;41:255-323. doi: 10.1093/eurheartj/ehz486.10.1093/eurheartj/ehz48631497854Search in Google Scholar

Seferović PM, Fragasso G, Petrie M, et al. Sodium–glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:1495-1503. doi: 10.1002/ejhf.1954.10.1002/ejhf.195432618086Search in Google Scholar

Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:1169-1186. doi: 10.1002/ejhf.1531.10.1002/ejhf.153131129923Search in Google Scholar

Stevenson LW, Desai AS. Selecting patients for discussion of the ICD as primary prevention for sudden death in heart failure. J Card Fail. 2006;12:407-412. doi: 10.1016/j. cardfail.2006.06.001.Search in Google Scholar

Sommer A, Kronborg MB, Nørgaard BL, et al. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Eur J Heart Fail. 2016;18:1365-1374. doi: 10.1002/ejhf.530.10.1002/ejhf.53027087019Search in Google Scholar

Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539-1549. doi: 10.1056/NEJMoa050496.10.1056/NEJMoa05049615753115Search in Google Scholar

Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329-1338. doi: 10.1056/NEJMoa0906431.10.1056/NEJMoa090643119723701Search in Google Scholar

Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877-883. doi: 10.1056/NEJMoa013474.10.1056/NEJMoa01347411907286Search in Google Scholar

Bardy GH. Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225-237. doi: 10.1056/NEJMoa043399.10.1056/NEJMoa04339915659722Search in Google Scholar

Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378:417-427. doi: 10.1056/NEJMoa1707855.10.1056/NEJMoa170785529385358Search in Google Scholar

Tofield A. The CABANA trial: a first glance at an important study. Eur Heart J. 2018;39:2767-2768. doi: 10.1093/eurheartj/ehy379.10.1093/eurheartj/ehy37930107429Search in Google Scholar

Brignole M, Pokushalov E, Pentimalli F, et al. A randomized controlled trial of atrioventricular junction ablation and cardiac resynchronization therapy in patients with permanent atrial fibrillation and narrow QRS. Eur Heart J. 2018;39:3999-4008. doi: 10.1093/eurheartj/ehy555.10.1093/eurheartj/ehy55530165479Search in Google Scholar

Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med. 2018;379:2297-2306. doi: 10.1056/NEJMoa1805374.10.1056/NEJMoa180537430145927Search in Google Scholar

Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;379:2307-2318. doi: 10.1056/NEJMoa1806640.10.1056/NEJMoa180664030280640Search in Google Scholar

Givertz MM, Stevenson LW, Costanzo MR, CHAMPION Trial Investigators. Pulmonary artery pressure-guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2017;70:1875-1886. doi: 10.1016/j.jacc.2017.08.010.10.1016/j.jacc.2017.08.01028982501Search in Google Scholar

Kadish A, Nademanee K, Volosin K, et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J. 2011;161:329-337. doi: 10.1016/j.ahj.2010.10.025.10.1016/j.ahj.2010.10.02521315216Search in Google Scholar

Abraham WT, Kuck KH, Goldsmith RL, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018;6:874-883. doi: 10.1016/j.jchf.2018.04.010.10.1016/j.jchf.2018.04.01029754812Search in Google Scholar

Kuschyk J, Nägele H, Heinz-Kuck K, et al. Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). Int J Cardiol. 2019;277:173-177. doi: 10.1016/j.ijcard.2018.10.086.10.1016/j.ijcard.2018.10.08630409733Search in Google Scholar

Wiegn P, Chan R, Jost C, et al. Safety, performance, and efficacy of cardiac contractility modulation delivered by the 2-lead optimizer smart system: The FIX-HF-5C2 Study. Circulation: Heart Fail. 2020;13:p.e006512. doi: 10.1161/CIRCHEARTFAILURE.119.006512.10.1161/CIRCHEARTFAILURE.119.00651232264716Search in Google Scholar

Tariq S, Aronow WS. Use of inotropic agents in treatment of systolic heart failure. Intern J Mol Sci. 2015;16:29060-29068. doi: 10.3390/ijms161226147.10.3390/ijms161226147469109426690127Search in Google Scholar

Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat Commun. 2017;8:1-10. doi: 10.1038/s41467-017-00176-5.10.1038/s41467-017-00176-5554306528775348Search in Google Scholar

Psotka MA, Teerlink JR. Direct myosin activation by omecamtiv mecarbil for heart failure with reduced ejection fraction. Handb Exp Pharmacol. 2017;243:465-490. doi: 10.1007/164_2017_13.10.1007/164_2017_1328315072Search in Google Scholar

Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J. 2015;36:715-723. doi: 10.1093/eurheartj/ehu484.10.1093/eurheartj/ehu484436885725670819Search in Google Scholar

Kentsch M, Ludwig D, Drummer C, Gerzer R, Müller-Esch G. Haemodynamic and renal effects of urodilatin bolus injections in patients with congestive heart failure. Eur J Clin Investing. 1992;22:662-669. doi: 10.1093/eurheartj/ehu484.10.1093/eurheartj/ehu484Search in Google Scholar

Ghosh RK, Banerjee K, Tummala R, Ball S, Ravakhah K, Gupta A. Serelaxin in acute heart failure: most recent update on clinical and preclinical evidence. Cardiovasc Ther. 2017;35:55-63. doi: 10.1111/1755-5922.12231.10.1111/1755-5922.1223127727514Search in Google Scholar

Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93:405-480. doi: 10.1152/physrev.00001.2012.10.1152/physrev.00001.201223303914Search in Google Scholar

Dschietzig T, Teichman S, Unemori E, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Cardiac Fail. 2009;15:182-190. doi: 10.1016/j.cardfail.2009.01.008.10.1016/j.cardfail.2009.01.008Search in Google Scholar

Teerlink JR, Metra M, Felker GM, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373:1429-1439. doi: 10.1016/S0140-6736(09)60622-X.10.1016/S0140-6736(09)60622-XSearch in Google Scholar

Teerlink JR, Cotter G, Davison BA. RELAXin in Acute Heart Failure (RELAX-AHF) Investigators. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29-39. doi: 10.1016/S0140-6736(12)61855-8.10.1016/S0140-6736(12)61855-8Search in Google Scholar

Inomata T, Ikeda Y, Kida K, Kanagawa Aquaresis Investigators. Effects of additive tolvaptan vs. increased furosemide on heart failure with diuretic resistance and renal impairment-results from the K-STAR Study. Circulation. 2017;82:159-167. doi: 10.1253/circj.CJ-17-0179.10.1253/circj.CJ-17-017928835586Search in Google Scholar

Pose A, Almenar L, Gavira JJ, et al. Benefit of tolvaptan in the management of hyponatraemia in patients with diuretic-refractory congestive heart failure: the SEMI-SEC project. ESC Heart Fail. 2017;4:130-137. doi: 10.1002/ehf2.12124.10.1002/ehf2.12124539604128451449Search in Google Scholar

Uemura Y, Shibata R, Takemoto K, et al. Safety and efficacy of long-term use of tolvaptan in patients with heart failure and chronic kidney disease. Circ J. 2017;81:1736-1738. doi: 10.1253/circj.CJ-17-0554.10.1253/circj.CJ-17-055428883217Search in Google Scholar

Kinugawa K, Sato N, Inomata T, et al. Efficacy and safety of tolvaptan in heart failure patients with volume overload. Circ J. 2014;78:844-852. doi.org/10.1253/circj.CJ-66-0093.10.1253/circj.CJ-14-0126Search in Google Scholar

Feldman T, Mauri L, Kahwash R, et al. Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]): a phase 2, randomized, sham-controlled trial. Circulation. 2018;137:364-375. doi: 10.1161/CIRCULATIONAHA.117.032094.10.1161/CIRCULATIONAHA.117.03209429142012Search in Google Scholar

De Ferrari GM, Stolen C, Tuinenburg AE. Long-term vagal stimulation for heart failure: Eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Intern J Cardiol. 2017;244:229-234. doi: 10.1016/j. ijcard.2017.06.036.Search in Google Scholar

Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68:149-158. doi: 10.1016/j. jacc.2016.03.525.Search in Google Scholar

eISSN:
2457-5518
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Intensivmedizin und Notfallmedizin, Radiologie, Allgemeinmedizin, Innere Medizin, Kardiologie