[
Abbas, N., Crickmore, N., Shad, S. A. (2015). Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm. International Journal of Tropical Insect Science, 35(1), 48-53.
]Search in Google Scholar
[
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
]Search in Google Scholar
[
Akinwande, A. A., Dada, A. A., Umar, I. O. (2021). Acute toxicity of mesocarp of Azadirachta indica (L.) (Neem plant) on fingerlings of Heterobranchus bidorsalis. African Scientist, 7, 29-33.
]Search in Google Scholar
[
Arena, J. P., Liu, K. K., Paress, P. S., Frazier, E. G., Cully, D. F., Mrozik, H., Schaeffer, J. M. (1995). The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity. The Journal of Parasitology, 81(2), 286-294. https://doi.org/10.2307/3283936
]Search in Google Scholar
[
Bielza, P., Fernández, E., Grávalos, C., Abellán, J. (2009). Carbamates synergize the toxicity of acrinathrin in resistant western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 102(1), 393-397. https://doi.org/10.1603/029.102.0151
]Search in Google Scholar
[
Bitondi, M. M., Mora, I. M., Simoes, Z. L., Figueiredo, V. L. (1998). The Apis mellifera pupal melanization program is affected by treatment with a juvenile hormone analogue. Journal of Insect Physiology, 44(6), 499-507. https://doi.org/10.1016/S0022-1910(97)00113-3
]Search in Google Scholar
[
Branchiccela, B., Castelli, L., Corona, M., Díaz-Cetti, S., Invernizzi, C., Martínez de la Escalera, G., ... Antúnez, K. (2019). Impact of nutritional stress on the honeybee colony health. Scientific Reports, 9, 10156.
]Search in Google Scholar
[
Byrne, F. J., & Devonshire, A. L. (1991). In vivo inhibition of esterase and acetylcholinesterase activities by profenofos treatments in the tobacco whitefly Bemisia tabaci (Genn.): implications for routine biochemical monitoring of these enzymes. Pesticide Biochemistry and Physiology, 40(3), 198-204. https://doi.org/10.1016/0048-3575(91)90090-9
]Search in Google Scholar
[
Calderone, N. W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009. PloS One, 7, e37235. https://doi.org/10.1371/journal.pone.0037235
]Search in Google Scholar
[
Darriet, F., & Chandre, F. (2013). Efficacy of six neonicotinoid insecticides alone and in combination with deltamethrin and piperonyl butoxide against pyrethroid-resistant Aedes aegypti and Anopheles gambiae (diptera: culicidae). Pest Management Science, 69(8), 905-910. https://doi.org/10.1002/ps.3446
]Search in Google Scholar
[
Dennehy, T .J., Ellsworth, P. C., Nichols, R. L. (1996). The 1996 whitefly resistance management program for Arizona cotton. University of Arizona Press.
]Search in Google Scholar
[
Desneux, N., Decourtye, A., Delpuech, J. M. (2007). The sub-lethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440
]Search in Google Scholar
[
Dittrich, V., Uk, S., Ernst, G. H. (1990). Chemical control and insecticide resistance of whiteflies. In: Gerling DE (ed) Whiteflies: their Bionomics, pest status and management, Athenaeum Press, New Castle, UK.
]Search in Google Scholar
[
Farooqi, M. A., Irsa, B., Ali, S., Sajjad, A., Muhammad, W. H., Akhtar, S. (2020). Impact of selected insecticides on Apis mellifera L. (Hymenoptera: Apidae) under controlled conditions. Pakistan Journal of Zoology, 52(1), 193-198. https://dx.doi.org/10.17582/journal.pjz/2020.52.1.193.198
]Search in Google Scholar
[
Finney Probit analysis. (1971). Cambridge: Cambridge University Press, 333.
]Search in Google Scholar
[
Hardstone, M. C., & Scott, J. G. (2010). Is Apis mellifera more sensitive to insecticides than other insects. Pest Management Science, 66, 1171-1180. https://doi.org/10.1002/ps.2001
]Search in Google Scholar
[
Haarmann, T., Spivak, M., Weaver, D., Weaver, B., Glenn, T. (2002). Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. Journal of Economic Entomology, 95(1), 28-35. https://doi.org/10.1603/0022-0493-95.1.28
]Search in Google Scholar
[
Hepburn, R., & Hepburn, C. (2005). Bibiliography of Apis florea. Apidologie 36(3), 377-378. https://doi.org/10.1051/apido:2005024
]Search in Google Scholar
[
Khan, H. A., Akram, W., Shad, S. A. (2013). Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology, 22, 522-527.
]Search in Google Scholar
[
Klein, A. M., Vaissiere, B. E., Cane, J. H., Dewenter, I. S., Cunningham, S. A., Kremen, C., Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Socirty B: Biological Sciences, 274, 303-313. https://doi.org/10.1098/rspb.2006.3721
]Search in Google Scholar
[
Koch, H., & Weisser, P. (1997). Exposure of honey bee during pesticide application under field conditions. Apidologie, 28(6), 439-447. https://doi.org/10.1051/apido:19970610
]Search in Google Scholar
[
Koeniger, N. (1976). Interspecific competition between Apis florea and Apis mellifera in the tropics. Bee World, 57, 110-112. https://doi.org/10.1080/0005772X.1976.11097604
]Search in Google Scholar
[
Kuldna, P., Peterson, K., Poltimae, H., Luig, J. (2009). An application of DPSIR framework to identify issues of pollinator loss. Ecological Economics, 69(1), 32-42. https://doi.org/10.1016/j.ecolecon.2009.01.005
]Search in Google Scholar
[
Kumar, G., Singh, S., Nagarajaiah, R. P. K. (2020). Detailed review on pesticidal toxicity to honey bees and its management. Modern Beekeeping-Bases for Sustainable Production. pp. 13-33.
]Search in Google Scholar
[
Muttoo, R. N. (1956). Facts about beekeeping in India. Bee World, 37, 125-133. https://doi.org/10.1080/0005772X.1956.11094935
]Search in Google Scholar
[
Nasreen, A., Ashfaq, M., Mustafa, G. (2000). Intrinsic toxicity of some insecticides to egg parasitoid, Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Bulletin of the Institute of Tropical Agriculture Kyushu University, 23, 41-44. https://doi.org/10.11189/bita.23.41
]Search in Google Scholar
[
Pettis, J. S., Van Engeldsorp, D., Johnson, J., Dively, G. (2012). Pesticides exposure in honeybee results in increased levels of the gut pathogen Nosema. The Science of Nature, 99(12), 153-158. DOI: 10.1007/s00114-011-0881-1
]Search in Google Scholar
[
Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One, 8, 70182. https://doi.org/10.1371/journal.pone.0070182
]Search in Google Scholar
[
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25(6), 345-353.
]Search in Google Scholar
[
Radwan, E. M. M., & Taha, H. S. (2012). Toxic and biochemical effects of different insecticides on the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Egyptian Academic Journal of Biological Sciences, 4(1), 1-10. https://doi.org/10.21608/eajbsf.2012.17272
]Search in Google Scholar
[
Saddiq, B., Ejaz, M., Shad, S. A., Aslam, M. (2017). Assessing the combined toxicity of conventional and newer insecticides on the cotton mealybug Phenacoccus solenopsis. Ecotoxicology, 26, 1240-1249.
]Search in Google Scholar
[
Shukla, S., Jhamtani, R. C., Dahiya, M. S., Agarwal, R. (2017). Oxidative injury caused by individual and combined exposure of neonicotinoid, organophosphate and herbicide in zebrafish. Toxicology Reports, 4, 240-244. https://doi.org/10.1016/j.toxrep.2017.05.002
]Search in Google Scholar
[
Sullivan, J. J., & Goh, K. S. (2008). Environmental fate and properties of pyriproxyfen. Journal of Pesticide Science, 33, 339-350. https://doi.org/10.1584/jpestics.R08-02
]Search in Google Scholar
[
Wang, W., Mo, J., Cheng, J., Zhuang, P., Tang, Z. (2006). Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 84(3), 180-187. https://doi.org/10.1016/j.pestbp.2005.07.002
]Search in Google Scholar
[
Williams, G. R., Alaux, C., Costa, C., Csaki, T., Doublet, V., Eisenhardt, D., Brodschneider, R. (2013). Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. Journal of Apicultural Research, 52(1), 1-36. https://doi.org/10.3896/IBRA.1.52.1.04
]Search in Google Scholar
[
Wu, J. Y., Anelli, C. M., Sheppared, W. S. (2011). Sublethal effects of pesticides residues in brood comb on worker honeybees (Apis mellifera L.) development and longativity. PLoS One, 6, 11-17.
]Search in Google Scholar
[
Zhu, Y. C., Adamczyk, J., Rinderer, T., Yao, J., Danka, R., Luttrell, R., Gore, J. (2015). Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 108(6), 2640-2647. https://doi.org/10.1093/jee/tov269
]Search in Google Scholar
[
Zufelato, M. S., Bitondi, M. M., Simoes, Z. L., Hartfelder, K. (2000). The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Structure and Development, 29(2), 111-119. https://doi.org/10.1016/S1467-8039(00)00023-2
]Search in Google Scholar